MST(Minimum Spanning Tree,最小生成树)问题有两种通用的解法,Prim算法就是其中之一,它是从点的方面考虑构建一颗MST,大致思想是:设图G顶点集合为U,首先任意选择图G中的一点作为起始点a,将该点加入集合V,再从集合U-V中找到另一点b使得点b到V中任意一点的权值最小,此时将b点也加入集合V;以此类推,现在的集合V={a,b},再从集合U-V中找到另一点c使得点c到V中任意一点的权值最小,此时将c点加入集合V,直至所有顶点全部被加入V,此时就构建出了一颗MST。因为有N个顶点,所以该MST就有N-1条边,每一次向集合V中加入一个点,就意味着找到一条MST的边。
用图示和代码说明:
初始状态:
设置2个数据结构:
lowcost[i]:表示以i为终点的边的最小权值,当lowcost[i]=0说明以i为终点的边的最小权值=0,也就是表示i点加入了MST
mst[i]:表示对应lowcost[i]的起点,即说明边
我们假设V1是起始点,进行初始化(*代表无限大,即无通路):
lowcost[2]=6,lowcost[3]=1,lowcost[4]=5,lowcost[5]=*,lowcost[6]=*
mst[2]=1,mst[3]=1,mst[4]=1,mst[5]=1,mst[6]=1,(所有点默认起点是V1)
明显看出,以V3为终点的边的权值最小=1,所以边
此时,因为点V3的加入,需要更新lowcost数组和mst数组:
lowcost[2]=5,lowcost[3]=0,lowcost[4]=5,lowcost[5]=6,lowcost[6]=4
mst[2]=3,mst[3]=0,mst[4]=1,mst[5]=3,mst[6]=3
明显看出,以V6为终点的边的权值最小=4,所以边
此时,因为点V6的加入,需要更新lowcost数组和mst数组:
lowcost[2]=5,lowcost[3]=0,lowcost[4]=2,lowcost[5]=6,lowcost[6]=0
mst[2]=3,mst[3]=0,mst[4]=6,mst[5]=3,mst[6]=0
明显看出,以V4为终点的边的权值最小=2,所以边
此时,因为点V4的加入,需要更新lowcost数组和mst数组:
lowcost[2]=5,lowcost[3]=0,lowcost[4]=0,lowcost[5]=6,lowcost[6]=0
mst[2]=3,mst[3]=0,mst[4]=0,mst[5]=3,mst[6]=0
明显看出,以V2为终点的边的权值最小=5,所以边
此时,因为点V2的加入,需要更新lowcost数组和mst数组:
lowcost[2]=0,lowcost[3]=0,lowcost[4]=0,lowcost[5]=3,lowcost[6]=0
mst[2]=0,mst[3]=0,mst[4]=0,mst[5]=2,mst[6]=0
很明显,以V5为终点的边的权值最小=3,所以边
lowcost[2]=0,lowcost[3]=0,lowcost[4]=0,lowcost[5]=0,lowcost[6]=0
mst[2]=0,mst[3]=0,mst[4]=0,mst[5]=0,mst[6]=0
至此,MST构建成功,如图所示:
根据上面的过程,可以容易的写出具体实现代码如下(cpp):
如果只要求输出sum的值,直接把模板里的mst数组删除即可
#include
#include
using namespace std;
const int inf = 1 << 30;
int Map[110][110];
int n;
int d[110];///d数组表示离mst集合的最短距离,d[i] == 0表示i点进入mst
int prim()
{
int sum =0;
///初始化d数组;
for(int i = 1; i <= n; i++)
{
d[i] = Map[1][i];///设置从1开始将d数组设置成其他各点到点1的距离
}
for(int i = 2; i <= n; i++)
{
int x = 0, m = inf;
///找出在未加入mst集合中的点中离mst集合距离最短的点
for(int j = 2; j <= n; j++)
{
if(d[j] < m && d[j])m = d[x = j];///这里要求d[i]!=0,因为d[i] == 0表示已经加入mst中
}
//cout << m << " " << x << endl;
sum += m;
d[x] = 0;
///更新数组d,使d[i]为i点离得加入x点的集合的距离
for(int j = 2; j <= n; j++)
{
if(Map[x][j] < d[j])
{
d[j] = Map[x][j];
}
}
}
return sum;
}
int main()
{
while(cin >> n)
{
for(int i = 1; i <= n; i++)
for(int j = 1; j <= n; j++)
cin >> Map[i][j];
cout << prim() << endl;
}
return 0;
}