- AI 之路——数据分析(1)Pandas小结与框架整理
Robin_Pi
机器学习之路数据分析数据分析python人工智能可视化
目录1.写在前面1.1AI之路:1.2工具/技能:2.数据分析2.1数据分析的流程2.2数据的基本操作方法2.2.1Pandas概览2.2.2使用Pandas操作数据的核心(1)选择数据(2)操作数据2.2.2数据详解3.写在最后1.写在前面主要是阶段性框架总结1.1AI之路:数据分析——机器学习——深度学习——CV/NLP1.2工具/技能:Python、NumPy、Pandas、Matplotl
- PyTorch 深度学习实战(13):Proximal Policy Optimization (PPO) 算法
进取星辰
PyTorch深度学习实战深度学习pytorch算法
在上一篇文章中,我们介绍了Actor-Critic算法,并使用它解决了CartPole问题。本文将深入探讨ProximalPolicyOptimization(PPO)算法,这是一种更稳定、更高效的策略优化方法。我们将使用PyTorch实现PPO算法,并应用于经典的CartPole问题。一、PPO算法基础PPO是OpenAI提出的一种强化学习算法,旨在解决策略梯度方法中的训练不稳定问题。PPO通过
- 人工智能概念
zhangpeng455547940
计算机人工智能
机器学习、深度学习、大模型机器学习提供框架,使得系统可以从数据中学习算法:线性回归、逻辑回归、支持向量机、决策树、随机森林、K近邻算法深度学习是实现这一目标的工具,模仿人脑,使用多层神经网络进行学习算法:多层感知器、卷积神经网络、循环神经网络、长短期记忆网络大模型指参数量巨大的深度学习模型人工智能应用:自然语言处理、图像识别与生成、语音识别、政务与企业服务...
- 机器学习(二) 本文(2.5万字) | KNN算法原理及Python复现 |
小酒馆燃着灯
机器学习算法k近邻算法
文章目录一KNN算法原理二KNN三要素三机器学习中标准化四KNN分类预测规则五KNN回归预测规则六KNN算法实现方式七KDTree7.1构造KDtree7.2KDtree查找最近邻八KNN特点九KNN算法实现案例一案例二1.机器学习2.深度学习与目标检测3.YOLOv54.YOLOv5改进5.YOLOv8及其改进6.Python与PyTorch7.工具8.小知识点9.杂记一KNN算法原理K近邻分类
- 再添殊荣!移远通信工业智能品牌宝维塔™斩获AI创新应用奖
移远通信
算力人工智能工业智能
12月24日,2024中国物联网产业大会暨第21届慧聪品牌盛会在深圳圆满落幕。会上,移远通信凭借其工业智能品牌宝维塔™在推动AI技术落地与应用创新方面的卓越贡献,获颁“AI创新应用奖”。作为科技发展的前沿力量,AI技术正深刻改变着各行各业的生产模式和效率,尤其在工业领域,展现出了巨大潜力。宝维塔™是移远通信精心打造的工业智能品牌,专注于将人工智能、边缘计算、机器视觉、深度学习、软件算法平台等前沿技
- 验证码识别:使用OCR技术识别图形验证码详解
数据知道
2025年爬虫和逆向教程ocrpython爬虫OCR识别验证码识别图片验证码
文章目录一、基本原理二、所需工具2.1Python环境2.2图像处理库2.3OCR引擎2.4Python接口三、实现步骤3.1获取验证码图像3.2图像预处理3.3使用OCR进行字符识别3.4基本OCR识别样例四、提高识别准确率的方法4.1字符分割4.2使用深度学习模型4.3数据增强4.4集成多个OCR引擎五、实际应用中的注意事项六、总结验证码(CAPTCHA)是一种用于区分人类用户和自动化程序的安
- 从LayerNorm到RMSNorm:深度学习归一化技术的进化!qwen2.5的技术。
KangkangLoveNLP
qwen2.5深度学习人工智能transformerpytorch自然语言处理python神经网络
RMSNorm(RootMeanSquareNormalization,均方根归一化)是一种用于深度学习的归一化技术,是LayerNorm(层归一化)的一种改进。它通过计算输入数据的均方根(RootMeanSquare,RMS)来进行归一化,避免了传统归一化方法中均值和方差的计算1.LayerNorm(层归一化)LayerNorm(层归一化)是一种用于深度学习的归一化技术,主要用于稳定训练过程、加
- 【漫话机器学习系列】137.随机搜索(Randomized Search)
IT古董
漫话机器学习系列专辑机器学习人工智能
随机搜索(RandomizedSearch)详解在机器学习和深度学习的模型训练过程中,超参数调优(HyperparameterTuning)是至关重要的一环。随机搜索(RandomizedSearch)是一种高效的超参数优化方法,它通过在候选超参数的数值分布(如正态分布、均匀分布等)中随机选择超参数组合,从而找到最优的超参数配置。1.超参数调优的必要性超参数是模型在训练之前需要人为设定的参数,例如
- 医学人工智能影像诊断数据收集与整理
V搜xhliang0246
人工智能健康医疗算法
在医学领域中,人工智能(AI)尤其是深度学习技术,已经被广泛应用于医学影像的分析和诊断。为了训练这些模型,需要大量的高质量标注数据。下面我会给出一个简单的示例流程,介绍如何收集、整理和准备医学影像数据集,并提供一些基础的Python代码示例。数据收集首先,你需要收集包含医学影像的数据集。这些数据通常来自医院或研究机构,并且需要经过伦理审查和患者同意。示例数据集假设我们有一个包含肺部X光片的数据集,
- 深度学习模块缝合教程:从理论到实践
RockLiu@805
深度学习模块机器视觉深度学习人工智能
深度学习模块缝合教程:从理论到实践引言随着深度学习的不断发展,模型的设计与优化成为研究者关注的核心问题之一。如何有效地“缝合”不同模块,以实现更高效的计算和更强大的功能,是当前深度学习研究中的一个重要课题。在本文中,我们将从基础概念出发,详细探讨深度学习模块缝合的方法、技巧及其应用场景。无论是理论深厚的研究者还是实验导向的实践者,都可以从中获得启发。一、深度学习基础知识详解深度学习是人工智能领域的
- 大模型开发教程:从零开始的入门指南!
程序员二飞
人工智能java数据库职场和发展深度学习
概述大模型开发教程引领人工智能领域前沿,从基础概念至实战项目,全面覆盖Python与深度学习框架使用,指导初学者构建线性回归、逻辑回归、神经网络等模型,深入探索图像分类、情感分析等复杂应用,为探索未来智能世界提供坚实基石。前排提示,文末有大模型AGI-CSDN独家资料包哦!二、基础知识2.1人工智能与深度学习的概念人工智能(AI)是计算机科学的一个分支,旨在使计算机能够执行通常需要人类智能的任务。
- GAN生成对抗网络小记
文弱_书生
乱七八糟生成对抗网络人工智能神经网络
生成对抗网络(GAN)深入解析:数学原理与优化生成对抗网络(GenerativeAdversarialNetwork,GAN)是一个基于博弈论的深度学习框架,通过生成器(G)和判别器(D)之间的对抗训练,生成高度逼真的数据。其核心思想是让GGG生成伪造数据以欺骗DDD,而DDD则努力分辨真实数据与伪造数据。GAN在理论上可以看作一个极小极大(Minimax)优化问题。1.GAN的数学公式1.1生成
- 深度学习之优化器Optimizer介绍
yueguang8
人工智能深度学习人工智能
优化器(Optimizer)是深度学习训练中非常关键的组件,它负责根据损失函数的梯度来更新模型参数,从而使模型性能不断提升。1.优化器的作用和重要性优化器是训练深度学习模型的核心组件之一。它负责根据损失函数的梯度来更新模型参数,推动模型性能不断提高。选择合适的优化器可以极大地影响模型的收敛速度和最终性能。2.优化器的基本原理优化器的基本思路是利用梯度下降法来最小化损失函数。每一步都根据当前梯度的方
- 深度学习 常见优化器
Humingway
深度学习人工智能
一、基础优化器随机梯度下降(SGD)•核心:∇θJ(θ)=η*∇θJ(θ)•特点:学习率固定,收敛路径震荡大•适用场景:简单凸优化问题•改进方向:动量加速二、动量系优化器2.SGDwithMomentum•公式:v_t=γv_{t-1}+η∇θJ(θ)•效果:平滑梯度更新,加速收敛•经典参数:γ=0.9(多数场景推荐)三、自适应学习率家族3.Adagrad•创新:∇θJ(θ)_t=∇θJ(θ)/(
- 深度学习中常用的优化器
无能者狂怒
深度学习计算机视觉人工智能深度学习算法
梯度下降是优化神经网络的首选方法。本文将介绍各种基于梯度下降的优化器,如Momentum,Adagrad以及Adam等等StochasticGradientDescent(SGD)MomentumAdagradRMSpropAdamAdaMax1:梯度下降假设梯度下降法是一个下山的过程。假设这样一个场景:一个人被困在山上,需要从山上下来(找到山的最低点,也就是山谷)。但此时山上的浓雾很大,导致可视
- 常见的深度学习优化器
青灯剑客
算法python人工智能机器学习自然语言处理深度学习
一直用优化器解决问题,但是没有对它进行一个系统的总结。。不对,系统的总结进行过,只是时过境迁,早已忘却。一、照进我脑海的几个家伙一开始学习的当然是SGD,只是学着学着就忘记了。后来呢,接触到网上介绍的几种常用的优化器,看着原理挺给力,可是记了好几次都记不住。直到遇到《百面机器学习》,它从最基本的原理出发,给了我一点灵感。(1)几种常用的优化器,详情见这里链接34(2)二、以为自己遇见了大海老师说,
- 深度学习 bert与Transformer的区别联系
Humingway
深度学习berttransformer
BERT(BidirectionalEncoderRepresentationsfromTransformers)和Transformer都是现代自然语言处理(NLP)中的重要概念,但它们代表不同的层面。理解这两者之间的区别与联系有助于更好地掌握它们在NLP任务中的应用。TransformerTransformer是一种特定的深度学习模型架构,由Vaswani等人在2017年的论文《Attenti
- PyTorch 和 Python关系
一只积极向上的小咸鱼
pythonpytorch人工智能
1PyTorch和Python关系PyTorch和Python是两个不同但相互关联的工具,主要用于机器学习和深度学习领域。以下是它们之间的关系和各自的作用:Python编程语言:Python是一种高级编程语言,以其简洁易读的语法而闻名。广泛使用:Python在数据科学、人工智能、Web开发、自动化等多个领域有着广泛的应用。库和生态系统丰富:Python拥有丰富的第三方库和工具,如NumPy、pan
- Python与人工智能:为何它们是天作之合?
纪至训至
python人工智能开发语言
引言在人工智能(AI)飞速发展的今天,Python已成为这一领域的“明星语言”。从机器学习到深度学习,从自然语言处理到计算机视觉,Python的身影无处不在。那么,Python究竟为何能成为AI开发的首选工具?本文将探讨Python与AI之间的深度关联,并解析其背后的原因。1.Python的简洁性与可读性AI开发的核心在于快速迭代和实验,而Python以其简洁的语法和直观的代码结构著称。开发者无需
- python和pytorch关系_PyTorch:Python优先的深度学习框架
weixin_39877182
最近,Torch7团队开源了PyTorch。据该项目官网介绍,PyTorch是一个Python优先的深度学习框架,能够在强大的GPU加速基础上实现张量和动态神经网络。PyTorch是一个Python软件包,其提供了两种高层面的功能:使用强大的GPU加速的Tensor计算(类似numpy)构建于基于tape的autograd系统的深度神经网络如有需要,你也可以复用你最喜欢的Python软件包(如nu
- 基于YOLOv5的车牌识别系统:从数据集到UI界面的实现
深度学习&目标检测实战项目
YOLOv5实战项目YOLOui分类数据挖掘目标跟踪
1.引言随着智能交通系统的发展,车牌识别技术已成为交通管理、停车场自动化、路面监控等应用中的关键技术之一。车牌识别系统(LicensePlateRecognition,LPR)主要用于识别车辆的车牌号码,并将其转化为可以进一步处理的数据。车牌识别系统通常由图像处理、字符识别、目标检测等多种技术组成。近年来,随着深度学习技术的飞速发展,基于卷积神经网络(CNN)的目标检测算法,如YOLO(YouOn
- 点云空洞的边界识别提取 pso-bp 神经网络的模型来修复点云空洞 附python代码
点云-激光雷达-Slam-三维牙齿
激光雷达点云c++为主神经网络人工智能深度学习点云python
代码是一个Python程序,用于处理3D点云数据,特别是检测和修复点云中的孔洞区域。1.**导入库**:-`numpy`:用于数学运算。-`open3d`:用于处理3D数据和可视化。-`torch`:PyTorch库,用于深度学习。-`torch.nn`和`torch.optim`:PyTorch的神经网络和优化器模块。-`mpl_toolkits.mplot3d`和`matplotlib.pyp
- Python深度学习033:Python、PyTorch、CUDA和显卡驱动之间的关系
若北辰
Python深度学习python深度学习pytorch
Python、PyTorch、CUDA和显卡驱动之间的关系相当紧密,它们共同构成了一个能够执行深度学习模型的高效计算环境。下面是它们之间关系的简要概述:PythonPython是一种编程语言,广泛用于科学计算、数据分析和机器学习。它是开发和运行PyTorch代码的基础环境。PyTorchPyTorch是一个开源的机器学习库,用于应用如自然语言处理和计算机视觉的深度学习模型。它提供了丰富的API,使
- Activeloop Deep Lake: AI时代的数据湖解决方案
HGWAcsdgvs
人工智能python
技术背景介绍在当前AI技术蓬勃发展的背景下,数据的存储和检索显得尤为重要。ActiveloopDeepLake是一种多模态向量存储解决方案,支持嵌入和元数据(如文本、Json、图像、音频、视频等)的存储。它适用于本地、云端或Activeloop存储,通过嵌入以及其属性进行混合搜索。该解决方案是一个无服务器的数据湖,具备版本控制、查询引擎和深度学习框架的流媒体数据加载器。核心原理解析DeepLake
- Deep Lake:人工智能时代的数据湖
开源项目精选
人工智能
DeepLake是一款由Activeloop开发的开源深度学习数据湖,旨在解决深度学习数据管理的挑战。它提供高效的多模态数据管理、类似Git的版本控制、强大的查询和可视化功能,并与MLOps生态系统无缝集成,助你轻松驾驭海量数据,加速模型训练!Stars数8,458Forks数652主要特点多模态数据支持:支持图像、视频、音频、文本、点云等各种数据类型。张量存储:以深度学习框架友好的张量格式存储数
- PyTorch深度学习框架进阶学习计划 - 第21天:自然语言处理基础
凡人的AI工具箱
深度学习pytorch学习人工智能AI编程AIGC自然语言处理
PyTorch深度学习框架进阶学习计划-第21天自然语言处理基础今天我们将深入学习自然语言处理(NLP)的基础概念,重点关注词嵌入技术、序列建模原理以及主流模型之间的区别和优缺点。通过理解这些基础知识,你将能够更好地应用PyTorch构建NLP应用。1.词嵌入原理与实现词嵌入(WordEmbeddings)是NLP中的核心概念,它将单词映射到连续向量空间,使得语义相似的词在向量空间中距离较近。为什
- PyTorch深度学习框架60天进阶学习计划 - 第19天:时间序列预测
凡人的AI工具箱
深度学习pytorch学习人工智能AI编程迁移学习python
PyTorch深度学习框架60天进阶学习计划-第19天:时间序列预测目录时间序列预测概述滑动窗口数据构造方法归一化策略对比:MinMaxvsZ-ScoreLSTM基础原理Attention机制与LSTM结合LSTM-Attention模型实现TeacherForcing技术与应用Prophet基准模型对比多步预测的滚动验证方法综合实战:股票价格预测1.时间序列预测概述时间序列预测是机器学习中的一个
- PyTorch深度学习框架60天进阶学习计划 - 第18天:模型压缩技术
凡人的AI工具箱
深度学习pytorch学习python人工智能
PyTorch深度学习框架60天进阶学习计划-第18天:模型压缩技术目录模型压缩技术概述知识蒸馏详解软标签生成策略KL散度损失推导温度参数调节结构化剪枝技术通道剪枝评估准则L1-norm剪枝算法APoZ剪枝算法量化训练基础量化类型与精度PyTorch量化API剪枝与量化协同优化Torch.fx动态计算图修改自动化模型压缩流程实现实战案例:ResNet模型压缩性能评估与分析进阶挑战与思考1.模型压缩
- 深度学习c++资源库:vector容器,蓝桥杯常用算法sort,unique(排序+去重)
AI少女小鹿
c++算法开发语言
vector容器1.基本概念是STL中的一个容器类,不同于普通数组的静态空间,vector可以动态扩展。动态扩展:并不是在原空间连接新空间,而是找到更大的内存空间,将原数据拷贝到新空间,释放原空间。是一个序列容器,它允许用户在容器的末尾快速地添加或删除元素。与数组相比,提供了更多的功能,如自动调整大小、随机访问等。2.声明与初始化需要指定元素类型,可通过多种方式进行初始化:#include#inc
- 《探秘人工智能与鸿蒙系统集成开发的硬件基石》
人工智能深度学习
在科技飞速发展的当下,人工智能与鸿蒙系统的集成开发开辟了创新的前沿领域。这一融合不仅代表着技术的演进,更预示着智能设备生态的全新变革。而在这场技术盛宴的背后,坚实的硬件配置是确保开发顺利进行的关键,它就像一座大厦的基石,决定了上层建筑的高度和稳定性。处理器:运算核心的澎湃动力处理器作为硬件系统的核心,在人工智能与鸿蒙系统集成开发中扮演着至关重要的角色。对于模型训练任务,尤其是深度学习模型,其复杂的
- 戴尔笔记本win8系统改装win7系统
sophia天雪
win7戴尔改装系统win8
戴尔win8 系统改装win7 系统详述
第一步:使用U盘制作虚拟光驱:
1)下载安装UltraISO:注册码可以在网上搜索。
2)启动UltraISO,点击“文件”—》“打开”按钮,打开已经准备好的ISO镜像文
- BeanUtils.copyProperties使用笔记
bylijinnan
java
BeanUtils.copyProperties VS PropertyUtils.copyProperties
两者最大的区别是:
BeanUtils.copyProperties会进行类型转换,而PropertyUtils.copyProperties不会。
既然进行了类型转换,那BeanUtils.copyProperties的速度比不上PropertyUtils.copyProp
- MyEclipse中文乱码问题
0624chenhong
MyEclipse
一、设置新建常见文件的默认编码格式,也就是文件保存的格式。
在不对MyEclipse进行设置的时候,默认保存文件的编码,一般跟简体中文操作系统(如windows2000,windowsXP)的编码一致,即GBK。
在简体中文系统下,ANSI 编码代表 GBK编码;在日文操作系统下,ANSI 编码代表 JIS 编码。
Window-->Preferences-->General -
- 发送邮件
不懂事的小屁孩
send email
import org.apache.commons.mail.EmailAttachment;
import org.apache.commons.mail.EmailException;
import org.apache.commons.mail.HtmlEmail;
import org.apache.commons.mail.MultiPartEmail;
- 动画合集
换个号韩国红果果
htmlcss
动画 指一种样式变为另一种样式 keyframes应当始终定义0 100 过程
1 transition 制作鼠标滑过图片时的放大效果
css
.wrap{
width: 340px;height: 340px;
position: absolute;
top: 30%;
left: 20%;
overflow: hidden;
bor
- 网络最常见的攻击方式竟然是SQL注入
蓝儿唯美
sql注入
NTT研究表明,尽管SQL注入(SQLi)型攻击记录详尽且为人熟知,但目前网络应用程序仍然是SQLi攻击的重灾区。
信息安全和风险管理公司NTTCom Security发布的《2015全球智能威胁风险报告》表明,目前黑客攻击网络应用程序方式中最流行的,要数SQLi攻击。报告对去年发生的60亿攻击 行为进行分析,指出SQLi攻击是最常见的网络应用程序攻击方式。全球网络应用程序攻击中,SQLi攻击占
- java笔记2
a-john
java
类的封装:
1,java中,对象就是一个封装体。封装是把对象的属性和服务结合成一个独立的的单位。并尽可能隐藏对象的内部细节(尤其是私有数据)
2,目的:使对象以外的部分不能随意存取对象的内部数据(如属性),从而使软件错误能够局部化,减少差错和排错的难度。
3,简单来说,“隐藏属性、方法或实现细节的过程”称为——封装。
4,封装的特性:
4.1设置
- [Andengine]Error:can't creat bitmap form path “gfx/xxx.xxx”
aijuans
学习Android遇到的错误
最开始遇到这个错误是很早以前了,以前也没注意,只当是一个不理解的bug,因为所有的texture,textureregion都没有问题,但是就是提示错误。
昨天和美工要图片,本来是要背景透明的png格式,可是她却给了我一个jpg的。说明了之后她说没法改,因为没有png这个保存选项。
我就看了一下,和她要了psd的文件,还好我有一点
- 自己写的一个繁体到简体的转换程序
asialee
java转换繁体filter简体
今天调研一个任务,基于java的filter实现繁体到简体的转换,于是写了一个demo,给各位博友奉上,欢迎批评指正。
实现的思路是重载request的调取参数的几个方法,然后做下转换。
- android意图和意图监听器技术
百合不是茶
android显示意图隐式意图意图监听器
Intent是在activity之间传递数据;Intent的传递分为显示传递和隐式传递
显式意图:调用Intent.setComponent() 或 Intent.setClassName() 或 Intent.setClass()方法明确指定了组件名的Intent为显式意图,显式意图明确指定了Intent应该传递给哪个组件。
隐式意图;不指明调用的名称,根据设
- spring3中新增的@value注解
bijian1013
javaspring@Value
在spring 3.0中,可以通过使用@value,对一些如xxx.properties文件中的文件,进行键值对的注入,例子如下:
1.首先在applicationContext.xml中加入:
<beans xmlns="http://www.springframework.
- Jboss启用CXF日志
sunjing
logjbossCXF
1. 在standalone.xml配置文件中添加system-properties:
<system-properties> <property name="org.apache.cxf.logging.enabled" value=&
- 【Hadoop三】Centos7_x86_64部署Hadoop集群之编译Hadoop源代码
bit1129
centos
编译必需的软件
Firebugs3.0.0
Maven3.2.3
Ant
JDK1.7.0_67
protobuf-2.5.0
Hadoop 2.5.2源码包
Firebugs3.0.0
http://sourceforge.jp/projects/sfnet_findbug
- struts2验证框架的使用和扩展
白糖_
框架xmlbeanstruts正则表达式
struts2能够对前台提交的表单数据进行输入有效性校验,通常有两种方式:
1、在Action类中通过validatexx方法验证,这种方式很简单,在此不再赘述;
2、通过编写xx-validation.xml文件执行表单验证,当用户提交表单请求后,struts会优先执行xml文件,如果校验不通过是不会让请求访问指定action的。
本文介绍一下struts2通过xml文件进行校验的方法并说
- 记录-感悟
braveCS
感悟
再翻翻以前写的感悟,有时会发现自己很幼稚,也会让自己找回初心。
2015-1-11 1. 能在工作之余学习感兴趣的东西已经很幸福了;
2. 要改变自己,不能这样一直在原来区域,要突破安全区舒适区,才能提高自己,往好的方面发展;
3. 多反省多思考;要会用工具,而不是变成工具的奴隶;
4. 一天内集中一个定长时间段看最新资讯和偏流式博
- 编程之美-数组中最长递增子序列
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class LongestAccendingSubSequence {
/**
* 编程之美 数组中最长递增子序列
* 书上的解法容易理解
* 另一方法书上没有提到的是,可以将数组排序(由小到大)得到新的数组,
* 然后求排序后的数组与原数
- 读书笔记5
chengxuyuancsdn
重复提交struts2的token验证
1、重复提交
2、struts2的token验证
3、用response返回xml时的注意
1、重复提交
(1)应用场景
(1-1)点击提交按钮两次。
(1-2)使用浏览器后退按钮重复之前的操作,导致重复提交表单。
(1-3)刷新页面
(1-4)使用浏览器历史记录重复提交表单。
(1-5)浏览器重复的 HTTP 请求。
(2)解决方法
(2-1)禁掉提交按钮
(2-2)
- [时空与探索]全球联合进行第二次费城实验的可能性
comsci
二次世界大战前后,由爱因斯坦参加的一次在海军舰艇上进行的物理学实验 -费城实验
至今给我们大家留下很多迷团.....
关于费城实验的详细过程,大家可以在网络上搜索一下,我这里就不详细描述了
在这里,我的意思是,现在
- easy connect 之 ORA-12154: TNS: 无法解析指定的连接标识符
daizj
oracleORA-12154
用easy connect连接出现“tns无法解析指定的连接标示符”的错误,如下:
C:\Users\Administrator>sqlplus username/
[email protected]:1521/orcl
SQL*Plus: Release 10.2.0.1.0 – Production on 星期一 5月 21 18:16:20 2012
Copyright (c) 198
- 简单排序:归并排序
dieslrae
归并排序
public void mergeSort(int[] array){
int temp = array.length/2;
if(temp == 0){
return;
}
int[] a = new int[temp];
int
- C语言中字符串的\0和空格
dcj3sjt126com
c
\0 为字符串结束符,比如说:
abcd (空格)cdefg;
存入数组时,空格作为一个字符占有一个字节的空间,我们
- 解决Composer国内速度慢的办法
dcj3sjt126com
Composer
用法:
有两种方式启用本镜像服务:
1 将以下配置信息添加到 Composer 的配置文件 config.json 中(系统全局配置)。见“例1”
2 将以下配置信息添加到你的项目的 composer.json 文件中(针对单个项目配置)。见“例2”
为了避免安装包的时候都要执行两次查询,切记要添加禁用 packagist 的设置,如下 1 2 3 4 5
- 高效可伸缩的结果缓存
shuizhaosi888
高效可伸缩的结果缓存
/**
* 要执行的算法,返回结果v
*/
public interface Computable<A, V> {
public V comput(final A arg);
}
/**
* 用于缓存数据
*/
public class Memoizer<A, V> implements Computable<A,
- 三点定位的算法
haoningabc
c算法
三点定位,
已知a,b,c三个顶点的x,y坐标
和三个点都z坐标的距离,la,lb,lc
求z点的坐标
原理就是围绕a,b,c 三个点画圆,三个圆焦点的部分就是所求
但是,由于三个点的距离可能不准,不一定会有结果,
所以是三个圆环的焦点,环的宽度开始为0,没有取到则加1
运行
gcc -lm test.c
test.c代码如下
#include "stdi
- epoll使用详解
jimmee
clinux服务端编程epoll
epoll - I/O event notification facility在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。并且,在linu
- Hibernate对Enum的映射的基本使用方法
linzx0212
enumHibernate
枚举
/**
* 性别枚举
*/
public enum Gender {
MALE(0), FEMALE(1), OTHER(2);
private Gender(int i) {
this.i = i;
}
private int i;
public int getI
- 第10章 高级事件(下)
onestopweb
事件
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- 孙子兵法
roadrunners
孙子兵法
始计第一
孙子曰:
兵者,国之大事,死生之地,存亡之道,不可不察也。
故经之以五事,校之以计,而索其情:一曰道,二曰天,三曰地,四曰将,五
曰法。道者,令民于上同意,可与之死,可与之生,而不危也;天者,阴阳、寒暑
、时制也;地者,远近、险易、广狭、死生也;将者,智、信、仁、勇、严也;法
者,曲制、官道、主用也。凡此五者,将莫不闻,知之者胜,不知之者不胜。故校
之以计,而索其情,曰
- MySQL双向复制
tomcat_oracle
mysql
本文包括:
主机配置
从机配置
建立主-从复制
建立双向复制
背景
按照以下简单的步骤:
参考一下:
在机器A配置主机(192.168.1.30)
在机器B配置从机(192.168.1.29)
我们可以使用下面的步骤来实现这一点
步骤1:机器A设置主机
在主机中打开配置文件 ,
- zoj 3822 Domination(dp)
阿尔萨斯
Mina
题目链接:zoj 3822 Domination
题目大意:给定一个N∗M的棋盘,每次任选一个位置放置一枚棋子,直到每行每列上都至少有一枚棋子,问放置棋子个数的期望。
解题思路:大白书上概率那一张有一道类似的题目,但是因为时间比较久了,还是稍微想了一下。dp[i][j][k]表示i行j列上均有至少一枚棋子,并且消耗k步的概率(k≤i∗j),因为放置在i+1~n上等价与放在i+1行上,同理