分类:Data Structure
SegMent Tree Merge
[牛客网#35D 树的距离]
wyf非常喜欢树。一棵有根数树上有 n 个节点, 1 号点是他的根,每条边都有一个距离,而wyf是个爱问奇怪问题的熊孩子,他想知道对于某个点 x ,以 x 为根的子树上,所有与 x 距离大于等于 k 的点与 x 的距离之和。
数据范围: 1≤n,q≤2∗105,1≤d,k≤106
同《[Codeforces 893F. Subtree Minimum Query]线段树合并》这题的思路。
通过这两个题目总算对线段树合并比较理解了。
对每个节点建一个线段树,维护每个距离出现的次数以及区间距离之和。
#include
using namespace std;
typedef long long ll;
typedef long double lb;
typedef unsigned int uint;
typedef unsigned long long ull;
typedef pair<int, int> pii;
typedef pair pll;
typedef pair puu;
typedef pair pbb;
typedef vector<int> vi;
const int inf = 0x3f3f3f3f;
const ll infl = 0x3f3f3f3f3f3f3f3fLL;
template<typename T> inline void umax(T &a, T b) { a = max(a, b); }
template<typename T> inline void umin(T &a, T b) { a = min(a, b); }
template<typename T> inline T randIntv(const T& a, const T& b) { return (T)rand() % (b - a + 1) + a; }
void debug() { cout << endl; }
template<typename T, typename ...R> void debug (T f, R ...r) { cout << "[" << f << "]"; debug (r...); }
const int MAXN = 200005;
int n, q;
struct Edge {
int v, next;
ll w;
} edge[MAXN << 1];
int head[MAXN], etot;
void ini(int n) {
etot = 0;
for (int i = 0; i <= n; ++i) head[i] = -1;
}
void ins(int u, int v, ll w) {
edge[etot].v = v;
edge[etot].w = w;
edge[etot].next = head[u];
head[u] = etot ++;
}
struct TNode {
int cnt;
ll sum;
int ch[2];
void ini() { cnt = sum = ch[0] = ch[1] = 0; }
} nd[MAXN * 50];
int root[MAXN], nsz, null = 0;
ll dep[MAXN];
ll f[MAXN], fsz;
#define lch nd[rt].ch[0]
#define rch nd[rt].ch[1]
void pushUp(int rt) {
nd[rt].cnt = nd[lch].cnt + nd[rch].cnt;
nd[rt].sum = nd[lch].sum + nd[rch].sum;
}
void update(int p, ll v, int l, int r, int& rt) {
nd[rt = ++ nsz].ini();
if (l == r) {
nd[rt].cnt = 1;
nd[rt].sum = v;
return;
}
int md = (l + r) >> 1;
if (p <= md) update(p, v, l, md, lch);
else update(p, v, md + 1, r, rch);
pushUp(rt);
}
int merge(int u, int v) {
if (!u || !v) return u ^ v;
int rt = ++ nsz; nd[rt].ini();
nd[rt].ch[0] = merge(nd[u].ch[0], nd[v].ch[0]);
nd[rt].ch[1] = merge(nd[u].ch[1], nd[v].ch[1]);
nd[rt].cnt = nd[u].cnt + nd[v].cnt;
nd[rt].sum = nd[u].sum + nd[v].sum;
return rt;
}
void dfs1(int u, int fa, ll d) {
dep[u] = d;
for (int i = head[u]; ~i; i = edge[i].next) {
int v = edge[i].v; ll w = edge[i].w;
if (v == fa) continue;
dfs1(v, u, d + w);
}
}
void dfs2(int u, int fa) {
int pos = lower_bound(f + 1, f + fsz + 1, dep[u]) - f;
update(pos, dep[u], 1, fsz, root[u]);
for (int i = head[u]; ~i; i = edge[i].next) {
int v = edge[i].v;
if (v == fa) continue;
dfs2(v, u);
root[u] = merge(root[u], root[v]);
}
}
pair<int, ll> query(int L, int R, int l, int r, int rt) {
// if (L <= l && r <= R) debug("query", rt, nd[rt].cnt, nd[rt].sum);
if (L <= l && r <= R) return make_pair(nd[rt].cnt, nd[rt].sum);
int md = (l + r) >> 1;
pair<int, ll> lop(0, 0), rop(0, 0);
if (L <= md) lop = query(L, R, l, md, lch);
if (R > md) rop = query(L, R, md + 1, r, rch);
return make_pair(lop.first + rop.first, lop.second + rop.second);
}
int main() {
#ifdef ___LOCAL_WONZY___
freopen("input.txt", "r", stdin);
#endif // ___LOCAL_WONZY___
int u, x, cnt; ll w, k, sum, ans;
while (~scanf("%d", &n)) {
ini(n);
for (int i = 2; i <= n; ++i) {
scanf("%d %lld", &u, &w);
ins(i, u, w), ins(u, i, w);;
}
nsz = null = 0;
dfs1(1, 1, 1);
for (int i = 1; i <= n; ++i) f[i] = dep[i];
sort(f + 1, f + n + 1);
fsz = unique(f + 1, f + n + 1) - (f + 1);
dfs2(1, 1);
scanf("%d", &q);
for (int i = 1; i <= q; ++i) {
scanf("%d %lld", &x, &k);
int pos = lower_bound(f + 1, f + fsz + 1, dep[x] + k) - f;
tie(cnt, sum) = query(pos, fsz, 1, fsz, root[x]);
ans = sum - cnt * dep[x];
// debug(cnt, sum, ans);
printf("%lld\n", ans);
}
}
#ifdef ___LOCAL_WONZY___
cout << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC * 1000 << "ms." << endl;
#endif // ___LOCAL_WONZY___
return 0;
}