1. 平台驱动注册过程
具体的目录如下:
关于设备模型、设备与驱动关联的全过程分析。... 1
1.1 at91_i2c_init()函数... 1
1.2 platform_driver_register()函数... 2
1.3 driver_register()函数... 4
1.4 bus_add_driver()函数... 5
1.5 dd.c文件driver_attach()函数... 7
1.1 at91_i2c_init()函数
在文件drivers/i2c/busses/i2c-at91.c中,定义了结构体struct platform_driver并进行了初始化,
通过使用module_init()宏进行声明,当模块被加载到内核时会调用 at91_i2c_init()函数。在此函数中,
调用了platform_driver_register()函数来完成注册。
static struct platform_driver at91_i2c_driver = {
.probe= at91_i2c_probe,
.remove = __devexit_p(at91_i2c_remove),
.suspend= at91_i2c_suspend,
.resume= at91_i2c_resume,
.driver= {
.name
= "at91_i2c",
.owner
= THIS_MODULE,
},
};
static int __init at91_i2c_init(void)
{
return platform_driver_register(&at91_i2c_driver);
}
1.2 platform_driver_register()函数
在文件drivers/base/platform.c中,实现并导出了platform_driver_register()函数,以便使其他模块中
的函数可以调用此函数。它在完成简单的包装后,调用了driver_register()函数,完成了从平台实现到Linux内核实现的过渡。
int platform_driver_register(struct platform_driver *drv)
{
/*设置成platform_bus_type这个很重要,因为driver和device是通过bus联系在一起的,具体在本例中是通过
platform_bus_type中注册的回调例程和属性来是实现的, driver与device的匹配就是通过
platform_bus_type注册的回到例程platform_match ()来完成的。*/
drv->driver.bus = &platform_bus_type;
//在really_probe函数中,回调了platform_drv_probe函数
if (drv->probe)
drv->driver.probe = platform_drv_probe;
if (drv->remove)
drv->driver.remove = platform_drv_remove;
if (drv->shutdown)
drv->driver.shutdown = platform_drv_shutdown;
if (drv->suspend)
drv->driver.suspend = platform_drv_suspend;
if (drv->resume)
drv->driver.resume = platform_drv_resume;
return driver_register(&drv->driver);
}
EXPORT_SYMBOL_GPL(platform_driver_register);
在platform_driver_register()函数中,对总线附值使用了如下语句,给总线类型和相关操作函数赋值。
drv->driver.bus = &platform_bus_type;
struct bus_type platform_bus_type = {
.name = "platform",
.dev_attrs = platform_dev_attrs,
.match = platform_match,
.uevent = platform_uevent,
.suspend = platform_suspend,
.suspend_late = platform_suspend_late,
.resume_early = platform_resume_early,
.resume = platform_resume,
};
EXPORT_SYMBOL_GPL(platform_bus_type);
总线bus是联系driver和device的中间枢纽。Device通过所属的bus找到driver.
struct bus_type {
const char * name;
struct subsystem subsys;
struct kset drivers; // drivers-〉list链表包含了所有注册到该bus的driver.
struct kset devices; // devices ->list链表包含了所有注册到该bus的devices.
struct klist klist_devices; //
struct klist klist_drivers;
struct blocking_notifier_head bus_notifier;
struct bus_attribute * bus_attrs;
struct device_attribute * dev_attrs;
struct driver_attribute * drv_attrs;
int (*match)(struct device * dev, struct device_driver * drv);
int (*uevent)(struct device *dev, char **envp,
int num_envp, char *buffer, int buffer_size);
int (*probe)(struct device * dev);
int (*remove)(struct device * dev);
void (*shutdown)(struct device * dev);
int (*suspend)(struct device * dev, pm_message_t state);
int (*suspend_late)(struct device * dev, pm_message_t state);
int (*resume_early)(struct device * dev);
int (*resume)(struct device * dev);
};
在此,我们需要关注一下platform_match()和platform_drv_probe()函数。platform_match()
函数确定驱动与设备的关联,而platform_drv_probe()函数会在随后介绍的函数中被调用。
//比较驱动信息中的name与设备信息中的name两者是否一致
static int platform_match(struct device * dev, struct device_driver * drv)
{
struct platform_device *pdev = container_of(dev, struct platform_device, dev);
//通过device找到他所属的platform_device
return (strncmp(pdev->name, drv->name, BUS_ID_SIZE) = = 0);
}
linux kernel源码中有一个神奇的container_of宏,可以根据一个结构体中成员的地址计算出结构体自身的地址。
完全可以这样理解container_of宏:
#define container_of(ptr, type, member) (type *)((char *)ptr - offset_of(type,member))
对于实现匹配关系的设备和驱动应有如下关系:
platform_device -〉device :该device通过链表连接到BUS上.
platform_driver-〉driver(device_driver类型的结构体):该device通过链表连接到BUS上.
platform_device -〉device->device_driver(指针),该指针指向了platform_driver-〉driver。
这样platform_device、platform_driver 就通过platform_device -〉device联系在一起了。
因此我们可以通过platform_device -〉device 找到对应的platform_device和platform_driver。
这样就很容易理解下面的platform_drv_probe函数了:
static int platform_drv_probe(struct device *_dev)
{
struct platform_driver *drv = to_platform_driver(_dev->driver);
struct platform_device *dev = to_platform_device(_dev);
return drv->probe(dev);//转去执行platform_driver中定义的probe函数。
}。
对于挂到总线上的设备、驱动是通过:kset、kobject建立各个层次之间的联系。对于kset、kobject。可以参考DDR3设备管理的章节。
至此对设备(device)、总线(bus)、驱动(device_driver)的关系有了一个大概的了解。
对于2.6内核中更上面一层的封装:platform_device、platform_driver也有了大概的了解。
1.3 driver_register()函数
在文件drivers/base/driver.c中,实现了driver_register()函数。在此函数中,
初始化结构体struct device_driver中的klist_device和unloaded字段,通过klist_device字段,
可以保存此驱动支持的设备链表,通过“完成”接口机制,完成线程间的同步。
链表和“完成”接口的详细信息可以参考文献[1]。返回bus_add_driver()函数的运行结果。
/** *driver_register - register driver with bus *
@drv:driver to register *
We pass off most of the work to the bus_add_driver() call, *
since most of the things we have to do deal with the bus structures.
*The one interesting aspect is that we setup drv->unloaded *
as a completion that gets complete when the driver reference count reaches 0. */
int driver_register(struct device_driver * drv)
{
//如果总线的方法和设备自己的方法同时存在,将打印告警信息
if ((drv->bus->probe && drv->probe) || (drv->bus->remove && drv->remove) || (drv->bus->shutdown && drv->shutdown))
{
printk(KERN_WARNING "Driver '%s' needs updating - please use bus_type methods\n", drv->name);
}
klist_init(&drv->klist_devices, NULL, NULL); //将driver驱动上的设备链表清空
init_completion(&drv->unloaded);
return bus_add_driver(drv); //将本driver驱动注册登记到drv->bus所在的总线上。
在内核中以driver成员变量kobject,表示driver.
所谓的注册即是: driver中的内核成员对象kobject的链表(kobj->entry),
加入到bus总线的bus_type ->kset->list 链表中。这样就可以通过总线,找到所有定义在该总线下的kobject(driver).
}
1.4 bus_add_driver()函数
在文件drivers/base/bus.c中实现了bus_add_driver()函数,它通过语句
klist_add_tail(&drv->knode_bus, &bus->klist_drivers);
将驱动信息保存到总线结构中,在设备注册过程中,我们就可以明白此语句的作用了。在此语句之前,调用了driver_attach()函数。
/** *bus_add_driver - Add a driver to the bus. *@drv:driver. * */
int bus_add_driver(struct device_driver *drv)
{
struct bus_type * bus = get_bus(drv->bus); //获取总线内容,即前面定义的
platform_bus_type
int error = 0;
if (!bus)
return 0;
pr_debug("bus %s: add driver %s\n", bus->name, drv->name);
/*kobject_set_name :设置kboj->name[KOBJ_NAME_LEN]数组内容,如果KOBJ_NAME_LEN长度不够,
会调用kmalloc申请之后kobj->k_name指针或者指向kboj->name或者指向kmalloc返回地址*/
error = kobject_set_name(&drv->kobj, "%s", drv->name);
//设置kboj->name成员= drv->name
if (error)
goto out_put_bus; //释放总线
drv->kobj.kset = &bus->drivers; //设置device_driver结构体的kobj.kset成员变量(是一个kset指针变量)。
很重要,它指向总线(bus)的kset成员,bus->drivers成员drivers为kset类型。在platform_driver_register ()
函数中有如下总线赋值语句:drv->driver.bus = &platform_bus_type;
platform_bus_type为内核定义的一类总线(bus)。此处的drv->kobj.kset指针指向了总线(bus) 的kset成员。
总线的kset成员是kobject的顶层容器,包含了定义在该总线下面所有的kobject。
/******************************************************************/
/* kobject_register()理解:把drv的kobj登记到管理它的bus->kset集合上去。同时再根据层级关系创建相应的目录文件 。
注册登记该kobj,如果该kobj属于某个kset,那么将自己的entry节点(list_head)挂接到该kset的list链表上,以示自己需要
该kset的滋润,同时kobj->parent=&kset->kobj,parent指向kset用来管理自己的kobj
如果该kobj的parent已经定义,那么简单的将parent的引用计数加1
(如果该kobj不属于kset,而属于parent,那么简单的将parent的引用计数加1.)
对于kobj属于某个kset的情况,可以实现kset向下查找kobj,也可以实现kobj向上查找kset。
对于kobj属于某个parent的情况,查找只能是单向的,只能kobj找到parent,parent不能查找该parent挂接的kobj们。
parent是用来明显建立亲子关系图的标志性变量,当然在kset也能若隐若现的显露出这种关系,但总不如parent正宗和高效。
之后调用create_dir()创建该kobj在sysfs中的目录文件
最后调用kobject_uevent()将KOBJ_ADD事件通知到用户空间的守护进程*/
if ((error = kobject_register(&drv->kobj))) //将driver挂到bus总线上。
goto out_put_bus;
error = driver_attach(drv); //查找所有注册在该bus上的device,当有device的name和driver->name一样时。
即找到了该driver对应的设备。在里面调用的really_probe()函数中,实现了设备与驱动的绑定。
语句如下:dev->driver = drv;和ret = drv->probe(dev)
if (error)
goto out_unregister;
klist_add_tail(&drv->knode_bus, &bus->klist_drivers);
module_add_driver(drv->owner, drv);
/*所以一个驱动需要维持住1个klist链条和一个kobj层次结构--驱动drv->kobj对象,内核一方面使用
该kobj在sysfs中建立统一的与该kobj对应的目录对象供用户空间访问,另一方面使用该kobj的引用计数
来获悉该kobj设备的繁忙与空闲情况,
//当本kobj对象的引用计数到达0时,只要其他条件允许,那么说明集成本kobj的结构体对象不再使用,
内核得知这个情况很重要,因为这对内核进行进一步的决策提供了详细的证据资料,进而对物理设备进行细致
的电源管理成了可能,//如:当hub1上的所有端口设备都被拔掉之后,hub1就可以安全的进入省电模式了,而这个功能在2.4内核中是找不到的.
error = driver_add_attrs(bus, drv);
if (error) {
/* How the hell do we get out of this pickle? Give up */
printk(KERN_ERR "%s: driver_add_attrs(%s) failed\n",
__FUNCTION__, drv->name);
}
error = add_bind_files(drv);
if (error) {
/* Ditto */
printk(KERN_ERR "%s: add_bind_files(%s) failed\n",
__FUNCTION__, drv->name);
}
return error;
out_unregister:
kobject_unregister(&drv->kobj);
out_put_bus:
put_bus(bus);
return error;
}
下面说明设备驱动是如何知道总线对应设备的
1.5 dd.c文件driver_attach()函数
在文件drivers/base/dd.c中,实现了设备与驱动交互的核心函数。
1.5.1 driver_attach()函数
函数driver_attach()返回bus_for_each_dev()函数的运行结果。bus_for_each_dev()函数的原型如下:
int bus_for_each_dev(struct bus_type *bus, struct device *start, void *data,
int (*fn) (struct device *, void *));
该函数迭代了在总线上的每个设备,将相关的device结构传递给fn,同时传递data值。如果start是NULL,
将从总线上的第一个设备开始迭代;否则将从start后的第一个设备开始迭代。如果fn返回一个非零值,将停止迭代,
而这个值也会从该函数返回(摘自<>第三版)。
该函数是如何知道总线上的每个设备的呢?在设备注册过程中,我会详细介绍。
/* *drivers/base/dd.c - The core device/driver interactions. * * This file contains the (sometimes tricky) code that controls the *interactions between devices and drivers, which primarily includes *driver binding and unbinding. *//** *driver_attach - try to bind driver to devices. *@drv:driver. * *Walk the list of devices that the bus has on it and try to *match the driver with each one.If driver_probe_device() *
returns 0 and the @dev->driver is set, we've found a *compatible pair. */
int driver_attach(struct device_driver * drv)
{
return bus_for_each_dev(drv->bus, NULL, drv, __driver_attach);
}
1.5.2 __driver_attach()函数
函数__driver_attach()在调用driver_probe_device()函数前,需要进行线程间的互斥处理。
static int __driver_attach(struct device * dev, void * data)
{
struct device_driver * drv = data;
/* * Lock device and try to bind to it. We drop the error * here and always return 0, because we need to keep trying * to bind to devices and some drivers will return an error* simply if it didn't support the device. * * driver_probe_device() will spit a warning if there * is an error. */
if (dev->parent)
down(&dev->parent->sem);
down(&dev->sem);
if (!dev->driver)
driver_probe_device(drv, dev);
up(&dev->sem);
if (dev->parent)
up(&dev->parent->sem);
return 0;
}
1.5.3 driver_probe_device()函数
在driver_probe_device()函数中,调用了match函数platform_match(),如果它返回0,
表示驱动与设备不一致,函数返回;否则,调用really_probe()函数。
/** * driver_probe_device - attempt to bind device & driver together
* @drv: driver to bind a device to * @dev: device to try to bind to the driver * * First,
we call the bus's match function, if one present, which should * compare the device
IDs the driver supports with the device IDs of the * device. Note we don't do this
ourselves because we don't know the * format of the ID structures, nor what is to be
considered a match and * what is not. * * This function returns 1 if a match is found,
an error if one occurs *(that is not -ENODEV or -ENXIO), and 0 otherwise.
* * This function must be called with @dev->sem held. When called for a * USB interface,
@dev->parent->sem must be held as well. */
int driver_probe_device(struct device_driver * drv, struct device * dev)
{
struct stupid_thread_structure *data;
struct task_struct *probe_task;
int ret = 0;
if (!device_is_registered(dev))
return -ENODEV;
if (drv->bus->match && !drv->bus->match(dev, drv))
goto done;
pr_debug("%s: Matched Device %s with Driver %s\n",
drv->bus->name, dev->bus_id, drv->name);
data = kmalloc(sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
data->drv = drv;
data->dev = dev;
if (drv->multithread_probe) {
probe_task = kthread_run(really_probe, data,
"probe-%s", dev->bus_id);
if (IS_ERR(probe_task))
ret = really_probe(data);
} else
ret = really_probe(data);
done:
return ret;
}
struct stupid_thread_structure {
struct device_driver *drv;
struct device *dev;
};
1.5.4 really_probe()函数
在really_probe()函数中,实现了设备与驱动的绑定。语句如下:dev->driver = drv;和
ret = drv->probe(dev); probe()函数的实现如下:
include/linux/platform_device.h
#define to_platform_device(x) container_of((x), struct platform_device, dev)
drivers/base/platform.c
#define to_platform_driver(drv) (container_of((drv), struct platform_driver, driver))
static int platform_drv_probe(struct device *_dev)
{
struct platform_driver *drv = to_platform_driver(_dev->driver);
struct platform_device *dev = to_platform_device(_dev);
return drv->probe(dev);
}
在此函数中,回调了我们在i2c-at91.c文件中实现的探测函数at91_i2c_probe(),至此,平台驱动的注册过程结束。
static atomic_t probe_count = ATOMIC_INIT(0);
static DECLARE_WAIT_QUEUE_HEAD(probe_waitqueue);
static int really_probe(void *void_data)
{
struct stupid_thread_structure *data = void_data;
struct device_driver *drv = data->drv;
struct device *dev = data->dev;
int ret = 0;
atomic_inc(&probe_count);
pr_debug("%s: Probing driver %s with device %s\n",
drv->bus->name, drv->name, dev->bus_id);
WARN_ON(!list_empty(&dev->devres_head));
dev->driver = drv;
if (driver_sysfs_add(dev)) {
printk(KERN_ERR "%s: driver_sysfs_add(%s) failed\n",
__FUNCTION__, dev->bus_id);
goto probe_failed;
}
if (dev->bus->probe) {
ret = dev->bus->probe(dev);
if (ret)
goto probe_failed;
} else if (drv->probe) {
ret = drv->probe(dev);
if (ret)
goto probe_failed;
}
//设备与驱动绑定后,对系统中已注册的组件进行事件通知。
driver_bound(dev);
ret = 1;
pr_debug("%s: Bound Device %s to Driver %s\n",
drv->bus->name, dev->bus_id, drv->name);
goto done;
probe_failed:
devres_release_all(dev);
driver_sysfs_remove(dev);
dev->driver = NULL;
if (ret != -ENODEV && ret != -ENXIO) {
/* driver matched but the probe failed */
printk(KERN_WARNING
"%s: probe of %s failed with error %d\n",
drv->name, dev->bus_id, ret);
}
/* * Ignore errors returned by ->probe so that the next driver can try * its luck. */
ret = 0;
done:
kfree(data);
atomic_dec(&probe_count);
wake_up(&probe_waitqueue);
return ret;
}