实战 迁移学习 VGG19、ResNet50、InceptionV3 实践 猫狗大战 问题

一、实践流程

1、数据预处理

主要是对训练数据进行随机偏移、转动等变换图像处理,这样可以尽可能让训练数据多样化

另外处理数据方式采用分批无序读取的形式,避免了数据按目录排序训练

    #数据准备
    def DataGen(self, dir_path, img_row, img_col, batch_size, is_train):
        if is_train:
            datagen = ImageDataGenerator(rescale=1./255,
                zoom_range=0.25, rotation_range=15.,
                channel_shift_range=25., width_shift_range=0.02, height_shift_range=0.02,
                horizontal_flip=True, fill_mode='constant')
        else:
            datagen = ImageDataGenerator(rescale=1./255)

        generator = datagen.flow_from_directory(
            dir_path, target_size=(img_row, img_col),
            batch_size=batch_size,
            shuffle=is_train)

        return generator
2、载入现有模型

这个部分是核心工作,目的是使用ImageNet训练出的权重来做我们的特征提取器,注意这里后面的分类层去掉

base_model = InceptionV3(weights='imagenet', include_top=False, pooling=None,
                           input_shape=(img_rows, img_cols, color),
                           classes=nb_classes)

然后是冻结这些层,因为是训练好的

        for layer in base_model.layers:
            layer.trainable = False
而分类部分,需要我们根据现有需求来新定义的,这里可以根据实际情况自己进行调整,比如这样
        x = base_model.output
        # 添加自己的全链接分类层
        x = GlobalAveragePooling2D()(x)
        x = Dense(1024, activation='relu')(x)
        predictions = Dense(nb_classes, activation='softmax')(x)
或者

       x = base_model.output
        #添加自己的全链接分类层
        x = Flatten()(x)
        predictions = Dense(nb_classes, activation='softmax')(x)
3、训练模型

这里我们用fit_generator函数,它可以避免了一次性加载大量的数据,并且生成器与模型将并行执行以提高效率。比如可以在CPU上进行实时的数据提升,同时在GPU上进行模型训练

            history_ft = model.fit_generator(
            train_generator,
            steps_per_epoch=steps_per_epoch,
            epochs=epochs,
            validation_data=validation_generator,
            validation_steps=validation_steps)

二、猫狗大战数据集

实战 迁移学习 VGG19、ResNet50、InceptionV3 实践 猫狗大战 问题_第1张图片

训练数据540M,测试数据270M,大家可以去官网下载

https://www.kaggle.com/c/dogs-vs-cats-redux-kernels-edition/data

下载后把数据分成dog和cat两个目录来存放
实战 迁移学习 VGG19、ResNet50、InceptionV3 实践 猫狗大战 问题_第2张图片

三、训练

训练的时候会自动去下权值,比如vgg19_weights_tf_dim_ordering_tf_kernels_notop.h5,但是如果我们已经下载好了的话,可以改源代码,让他直接读取我们的下载好的权值,比如在resnet50.py中

实战 迁移学习 VGG19、ResNet50、InceptionV3 实践 猫狗大战 问题_第3张图片

1、VGG19

vgg19的深度有26层,参数达到了549M,原模型最后有3个全连接层做分类器所以我还是加了一个1024的全连接层,训练10轮的情况达到了89%

实战 迁移学习 VGG19、ResNet50、InceptionV3 实践 猫狗大战 问题_第4张图片

2、ResNet50

ResNet50的深度达到了168层,但是参数只有99M,分类模型我就简单点,一层直接分类,训练10轮的达到了96%的准确率

实战 迁移学习 VGG19、ResNet50、InceptionV3 实践 猫狗大战 问题_第5张图片

3、inception_v3

InceptionV3的深度159层,参数92M,训练10轮的结果

这是一层直接分类的结果

实战 迁移学习 VGG19、ResNet50、InceptionV3 实践 猫狗大战 问题_第6张图片

这是加了一个512全连接的,大家可以随意调整测试

实战 迁移学习 VGG19、ResNet50、InceptionV3 实践 猫狗大战 问题_第7张图片


四、完整的代码

# -*- coding: utf-8 -*-
import os
from keras.utils import plot_model
from keras.applications.resnet50 import ResNet50
from keras.applications.vgg19 import VGG19
from keras.applications.inception_v3 import InceptionV3
from keras.layers import Dense,Flatten,GlobalAveragePooling2D
from keras.models import Model,load_model
from keras.optimizers import SGD
from keras.preprocessing.image import ImageDataGenerator
import matplotlib.pyplot as plt

class PowerTransferMode:
    #数据准备
    def DataGen(self, dir_path, img_row, img_col, batch_size, is_train):
        if is_train:
            datagen = ImageDataGenerator(rescale=1./255,
                zoom_range=0.25, rotation_range=15.,
                channel_shift_range=25., width_shift_range=0.02, height_shift_range=0.02,
                horizontal_flip=True, fill_mode='constant')
        else:
            datagen = ImageDataGenerator(rescale=1./255)

        generator = datagen.flow_from_directory(
            dir_path, target_size=(img_row, img_col),
            batch_size=batch_size,
            #class_mode='binary',
            shuffle=is_train)

        return generator

    #ResNet模型
    def ResNet50_model(self, lr=0.005, decay=1e-6, momentum=0.9, nb_classes=2, img_rows=197, img_cols=197, RGB=True, is_plot_model=False):
        color = 3 if RGB else 1
        base_model = ResNet50(weights='imagenet', include_top=False, pooling=None, input_shape=(img_rows, img_cols, color),
                              classes=nb_classes)

        #冻结base_model所有层,这样就可以正确获得bottleneck特征
        for layer in base_model.layers:
            layer.trainable = False

        x = base_model.output
        #添加自己的全链接分类层
        x = Flatten()(x)
        #x = GlobalAveragePooling2D()(x)
        #x = Dense(1024, activation='relu')(x)
        predictions = Dense(nb_classes, activation='softmax')(x)

        #训练模型
        model = Model(inputs=base_model.input, outputs=predictions)
        sgd = SGD(lr=lr, decay=decay, momentum=momentum, nesterov=True)
        model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])

        #绘制模型
        if is_plot_model:
            plot_model(model, to_file='resnet50_model.png',show_shapes=True)

        return model


    #VGG模型
    def VGG19_model(self, lr=0.005, decay=1e-6, momentum=0.9, nb_classes=2, img_rows=197, img_cols=197, RGB=True, is_plot_model=False):
        color = 3 if RGB else 1
        base_model = VGG19(weights='imagenet', include_top=False, pooling=None, input_shape=(img_rows, img_cols, color),
                              classes=nb_classes)

        #冻结base_model所有层,这样就可以正确获得bottleneck特征
        for layer in base_model.layers:
            layer.trainable = False

        x = base_model.output
        #添加自己的全链接分类层
        x = GlobalAveragePooling2D()(x)
        x = Dense(1024, activation='relu')(x)
        predictions = Dense(nb_classes, activation='softmax')(x)

        #训练模型
        model = Model(inputs=base_model.input, outputs=predictions)
        sgd = SGD(lr=lr, decay=decay, momentum=momentum, nesterov=True)
        model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])

        # 绘图
        if is_plot_model:
            plot_model(model, to_file='vgg19_model.png',show_shapes=True)

        return model

    # InceptionV3模型
    def InceptionV3_model(self, lr=0.005, decay=1e-6, momentum=0.9, nb_classes=2, img_rows=197, img_cols=197, RGB=True,
                    is_plot_model=False):
        color = 3 if RGB else 1
        base_model = InceptionV3(weights='imagenet', include_top=False, pooling=None,
                           input_shape=(img_rows, img_cols, color),
                           classes=nb_classes)

        # 冻结base_model所有层,这样就可以正确获得bottleneck特征
        for layer in base_model.layers:
            layer.trainable = False

        x = base_model.output
        # 添加自己的全链接分类层
        x = GlobalAveragePooling2D()(x)
        x = Dense(1024, activation='relu')(x)
        predictions = Dense(nb_classes, activation='softmax')(x)

        # 训练模型
        model = Model(inputs=base_model.input, outputs=predictions)
        sgd = SGD(lr=lr, decay=decay, momentum=momentum, nesterov=True)
        model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy'])

        # 绘图
        if is_plot_model:
            plot_model(model, to_file='inception_v3_model.png', show_shapes=True)

        return model

    #训练模型
    def train_model(self, model, epochs, train_generator, steps_per_epoch, validation_generator, validation_steps, model_url, is_load_model=False):
        # 载入模型
        if is_load_model and os.path.exists(model_url):
            model = load_model(model_url)

        history_ft = model.fit_generator(
            train_generator,
            steps_per_epoch=steps_per_epoch,
            epochs=epochs,
            validation_data=validation_generator,
            validation_steps=validation_steps)
        # 模型保存
        model.save(model_url,overwrite=True)
        return history_ft

    # 画图
    def plot_training(self, history):
      acc = history.history['acc']
      val_acc = history.history['val_acc']
      loss = history.history['loss']
      val_loss = history.history['val_loss']
      epochs = range(len(acc))
      plt.plot(epochs, acc, 'b-')
      plt.plot(epochs, val_acc, 'r')
      plt.title('Training and validation accuracy')
      plt.figure()
      plt.plot(epochs, loss, 'b-')
      plt.plot(epochs, val_loss, 'r-')
      plt.title('Training and validation loss')
      plt.show()


if __name__ == '__main__':
    image_size = 197
    batch_size = 32

    transfer = PowerTransferMode()

    #得到数据
    train_generator = transfer.DataGen('data/cat_dog_Dataset/train', image_size, image_size, batch_size, True)
    validation_generator = transfer.DataGen('data/cat_dog_Dataset/test', image_size, image_size, batch_size, False)

    #VGG19
    #model = transfer.VGG19_model(nb_classes=2, img_rows=image_size, img_cols=image_size, is_plot_model=False)
    #history_ft = transfer.train_model(model, 10, train_generator, 600, validation_generator, 60, 'vgg19_model_weights.h5', is_load_model=False)

    #ResNet50
    model = transfer.ResNet50_model(nb_classes=2, img_rows=image_size, img_cols=image_size, is_plot_model=False)
    history_ft = transfer.train_model(model, 10, train_generator, 600, validation_generator, 60, 'resnet50_model_weights.h5', is_load_model=False)

    #InceptionV3
    #model = transfer.InceptionV3_model(nb_classes=2, img_rows=image_size, img_cols=image_size, is_plot_model=True)
    #history_ft = transfer.train_model(model, 10, train_generator, 600, validation_generator, 60, 'inception_v3_model_weights.h5', is_load_model=False)

    # 训练的acc_loss图
    transfer.plot_training(history_ft)



你可能感兴趣的:(人工智能)