单调栈应用

题意大概让算t秒每一秒的最短路和,每条边每秒dis++;

dp算距离dis[i][j]:1到i点走j条边的最短路O(n(n+ m));
单调栈维护个上凸;
等差数列n^2求解;
代码

#include
#include
#include
#include
#include
using namespace std;

long long  mod=1e9+7;
int head[5505],tot,to[15005],val[15005],nex[15005];
int dis[5505][5505];
int n,m,t;
int inf=99999999; 
long long ans;
void add(int x,int y,int v)
{
    int tmp=head[x];
    head[x]=++tot;
    to[tot]=y;
    val[tot]=v;
    nex[tot]=tmp;   
}
void cal()
{
    for(int i=1;i<=n;i++)
    for(int j=0;j<=n;j++)
    dis[i][j]=inf;
    dis[1][0]=0;
    for(int i=0;i1;i++)
    for(int j=1;j<=n;j++)
    if(dis[j][i]for(int now=head[j];now!=-1;now=nex[now])
        {
                int next=to[now];

                if(dis[next][i+1]==inf||dis[next][i+1]>dis[j][i]+val[now])
                { 
                    dis[next][i+1]=dis[j][i]+val[now];  
                }
        }

    }
}
int q[5005],from[5005];
long long  C(int k0,int a0,int k1,int a1,int k2,int a2)   //locate x cordinate
{
    return (long long)(a0-a1)*(k2-k0)-(long long)(a0-a2)*(k1-k0);
}
void solve(int x)
{
    tot=0;
    for(int i=n-1;i>=0;i--)
    {

        if(dis[x][i]==inf) continue;
        while(tot>=2&&C(q[tot-1],dis[x][q[tot-1]],q[tot],dis[x][q[tot]],i,dis[x][i])>=0)    tot--;
        q[++tot]=i; 

    }
    from[1]=0;
    for(int i=2;i<=tot;i++)
    from[i]=(dis[x][q[i]]-dis[x][q[i-1]]+q[i-1]-q[i]-1)/(q[i-1]-q[i]);  //trans to int(up)a
    int to=t+1; 
    for(int i=1;i<=tot;i++) from[i]=max(0,from[i]);
    for(int i=tot;i>=1;i--)
    {
        if(from[i]>=to) continue;
        ans=(ans+(long long)(dis[x][q[i]])*(to-from[i])%mod)%mod;
        ans=(ans+(long long )(to+from[i]-1)* ((to-from[i])/2)%mod*q[i])%mod;
        to=from[i]; 
    }
}
int main()
{
    int aa,bb,cc;
    scanf("%d%d%d",&n,&m,&t);
    memset(head,-1,sizeof(head));
    for(int i=1;i<=m;i++)
    {
        scanf("%d%d%d",&aa,&bb,&cc);
        add(aa,bb,cc);
        add(bb,aa,cc);
    }
    cal();
    for(int i=1;i<=n;i++)
    solve(i);
    cout<<(ans+mod)%mod<

你可能感兴趣的:(单调栈)