世界杯足球运动员的实时追踪

from __future__ import division

import os
import random
import sys
import logging

import cv2
import fire
import numpy as np
import tensorflow as tf
import time
import networks
import commons
from boundingbox import BoundingBox, Coordinate
from configs import ADNetConf
from networks import ADNetwork
from pystopwatch import StopWatchManager

_log_level = logging.DEBUG
_logger = logging.getLogger('ADNetRunner')
_logger.setLevel(_log_level)
ch = logging.StreamHandler(sys.stdout)
ch.setLevel(_log_level)
formatter = logging.Formatter('[%(asctime)s] [%(name)s] [%(levelname)s] %(message)s')
ch.setFormatter(formatter)
_logger.addHandler(ch)


class ADNetRunner:
    MAX_BATCHSIZE = 512

    def __init__(self):
        self.tensor_input = tf.placeholder(tf.float32, shape=(None, 112, 112, 3), name='patch')
        self.tensor_action_history = tf.placeholder(tf.float32, shape=(None, 1, 1, 110), name='action_history')
        self.tensor_lb_action = tf.placeholder(tf.int32, shape=(None, ), name='lb_action')
        self.tensor_lb_class = tf.placeholder(tf.int32, shape=(None, ), name='lb_class')
        self.tensor_is_training = tf.placeholder(tf.bool, name='is_training')
        self.learning_rate_placeholder = tf.placeholder(tf.float32, [], name='learning_rate')

        self.persistent_sess = tf.Session(config=tf.ConfigProto(
            inter_op_parallelism_threads=1,
            intra_op_parallelism_threads=1
        ))

        self.adnet = ADNetwork(self.learning_rate_placeholder)
        self.adnet.create_network(self.tensor_input, self.tensor_lb_action, self.tensor_lb_class, self.tensor_action_history, self.tensor_is_training)
        if 'ADNET_MODEL_PATH' in os.environ.keys():
            self.adnet.read_original_weights(self.persistent_sess, os.environ['ADNET_MODEL_PATH'])
        else:
            self.adnet.read_original_weights(self.persistent_sess)

        self.action_histories = np.array([0] * ADNetConf.get()['action_history'], dtype=np.int8)
        self.action_histories_old = np.array([0] * ADNetConf.get()['action_history'], dtype=np.int8)
        self.histories = []
        self.iteration = 0
        self.imgwh = None

        self.callback_redetection = self.redetection_by_sampling
        self.failed_cnt = 0
        self.latest_score = 0

        self.stopwatch = StopWatchManager()

    def by_dataset(self, vid_path='./data/freeman1/'):
        assert os.path.exists(vid_path)

        gt_boxes = BoundingBox.read_vid_gt(vid_path)

        curr_bbox = None
        self.stopwatch.start('total')
        _logger.info('---- start dataset l=%d' % (len(gt_boxes)))
        for idx, gt_box in enumerate(gt_boxes):
            img = commons.imread(os.path.join(vid_path, 'img', '%04d.jpg' % (idx + 1)))
            self.imgwh = Coordinate.get_imgwh(img)
            if idx == 0:
                # initialization : initial fine-tuning
                self.initial_finetune(img, gt_box)
                curr_bbox = gt_box

            # tracking
            predicted_box = self.tracking(img, curr_bbox)
            self.show(img, gt_box=gt_box, predicted_box=predicted_box)
            # cv2.imwrite('/Users/ildoonet/Downloads/aaa/%d.jpg' % self.iteration, img)
            curr_bbox = predicted_box
        self.stopwatch.stop('total')

        _logger.info('----')
        _logger.info(self.stopwatch)
        _logger.info('%.3f FPS' % (len(gt_boxes) / self.stopwatch.get_elapsed('total')))

    def show(self, img, delay=1, predicted_box=None, gt_box=None):
        if isinstance(img, str):
            img = commons.imread(img)

        if gt_box is not None:
            gt_box.draw(img, BoundingBox.COLOR_GT)
        if predicted_box is not None:
            predicted_box.draw(img, BoundingBox.COLOR_PREDICT)

        cv2.imshow('result', img)
        cv2.waitKey(delay)

    def _get_features(self, samples):
        feats = []
        for batch in commons.chunker(samples, ADNetRunner.MAX_BATCHSIZE):
            feats_batch = self.persistent_sess.run(self.adnet.layer_feat, feed_dict={
                self.adnet.input_tensor: batch
            })
            feats.extend(feats_batch)
        return feats

    def initial_finetune(self, img, detection_box):
        self.stopwatch.start('initial_finetune')
        t = time.time()

        # generate samples
        pos_num, neg_num = ADNetConf.g()['initial_finetune']['pos_num'], ADNetConf.g()['initial_finetune']['neg_num']
        pos_boxes, neg_boxes = detection_box.get_posneg_samples(self.imgwh, pos_num, neg_num, use_whole=True)
        pos_lb_action = BoundingBox.get_action_labels(pos_boxes, detection_box)

        feats = self._get_features([commons.extract_region(img, box) for i, box in enumerate(pos_boxes)])
        for box, feat in zip(pos_boxes, feats):
            box.feat = feat
        feats = self._get_features([commons.extract_region(img, box) for i, box in enumerate(neg_boxes)])
        for box, feat in zip(neg_boxes, feats):
            box.feat = feat

        # train_fc_finetune_hem
        self._finetune_fc(
            img, pos_boxes, neg_boxes, pos_lb_action,
            ADNetConf.get()['initial_finetune']['learning_rate'],
            ADNetConf.get()['initial_finetune']['iter']
        )

        self.histories.append((pos_boxes, neg_boxes, pos_lb_action, np.copy(img), self.iteration))
        _logger.info('ADNetRunner.initial_finetune t=%.3f' % t)
        self.stopwatch.stop('initial_finetune')

    def _finetune_fc(self, img, pos_boxes, neg_boxes, pos_lb_action, learning_rate, iter, iter_score=1):
        BATCHSIZE = ADNetConf.g()['minibatch_size']

        def get_img(idx, posneg):
            if isinstance(img, tuple):
                return img[posneg][idx]
            return img

        pos_samples = [commons.extract_region(get_img(i, 0), box) for i, box in enumerate(pos_boxes)]
        neg_samples = [commons.extract_region(get_img(i, 1), box) for i, box in enumerate(neg_boxes)]
        # pos_feats, neg_feats = self._get_features(pos_samples), self._get_features(neg_samples)

        commons.imshow_grid('pos', pos_samples[-50:], 10, 5)
        commons.imshow_grid('neg', neg_samples[-50:], 10, 5)
        cv2.waitKey(1)

        for i in range(iter):
            batch_idxs = commons.random_idxs(len(pos_boxes), BATCHSIZE)
            batch_feats = [x.feat for x in commons.choices_by_idx(pos_boxes, batch_idxs)]
            batch_lb_action = commons.choices_by_idx(pos_lb_action, batch_idxs)
            self.persistent_sess.run(
                self.adnet.weighted_grads_op1,
                feed_dict={
                    self.adnet.layer_feat: batch_feats,
                    self.adnet.label_tensor: batch_lb_action,
                    self.adnet.action_history_tensor: np.zeros(shape=(BATCHSIZE, 1, 1, 110)),
                    self.learning_rate_placeholder: learning_rate,
                    self.tensor_is_training: True
                }
            )

            if i % iter_score == 0:
                # training score auxiliary(fc2)
                # -- hard score example mining
                scores = []
                for batch_neg in commons.chunker([x.feat for x in neg_boxes], ADNetRunner.MAX_BATCHSIZE):
                    scores_batch = self.persistent_sess.run(
                        self.adnet.layer_scores,
                        feed_dict={
                            self.adnet.layer_feat: batch_neg,
                            self.adnet.action_history_tensor: np.zeros(shape=(len(batch_neg), 1, 1, 110)),
                            self.learning_rate_placeholder: learning_rate,
                            self.tensor_is_training: False
                        }
                    )
                    scores.extend(scores_batch)
                desc_order_idx = [i[0] for i in sorted(enumerate(scores), reverse=True, key=lambda x:x[1][1])]

                # -- train
                batch_feats_neg = [x.feat for x in commons.choices_by_idx(neg_boxes, desc_order_idx[:BATCHSIZE])]
                self.persistent_sess.run(
                    self.adnet.weighted_grads_op2,
                    feed_dict={
                        self.adnet.layer_feat: batch_feats + batch_feats_neg,
                        self.adnet.class_tensor: [1]*len(batch_feats) + [0]*len(batch_feats_neg),
                        self.adnet.action_history_tensor: np.zeros(shape=(len(batch_feats)+len(batch_feats_neg), 1, 1, 110)),
                        self.learning_rate_placeholder: learning_rate,
                        self.tensor_is_training: True
                    }
                )

    def tracking(self, img, curr_bbox):
        self.iteration += 1
        is_tracked = True
        boxes = []
        self.latest_score = -1
        self.stopwatch.start('tracking.do_action')
        for track_i in range(ADNetConf.get()['predict']['num_action']):
            patch = commons.extract_region(img, curr_bbox)

            # forward with image & action history
            actions, classes = self.persistent_sess.run(
                [self.adnet.layer_actions, self.adnet.layer_scores],
                feed_dict={
                    self.adnet.input_tensor: [patch],
                    self.adnet.action_history_tensor: [commons.onehot_flatten(self.action_histories)],
                    self.tensor_is_training: False
                }
            )

            latest_score = classes[0][1]
            if latest_score < ADNetConf.g()['predict']['thresh_fail']:
                is_tracked = False
                self.action_histories_old = np.copy(self.action_histories)
                self.action_histories = np.insert(self.action_histories, 0, 12)[:-1]
                break
            else:
                self.failed_cnt = 0
            self.latest_score = latest_score

            # move box
            action_idx = np.argmax(actions[0])
            self.action_histories = np.insert(self.action_histories, 0, action_idx)[:-1]
            prev_bbox = curr_bbox
            curr_bbox = curr_bbox.do_action(self.imgwh, action_idx)
            if action_idx != ADNetwork.ACTION_IDX_STOP:
                if prev_bbox == curr_bbox:
                    print('action idx', action_idx)
                    print(prev_bbox)
                    print(curr_bbox)
                    raise Exception('box not moved.')

            # oscillation check
            if action_idx != ADNetwork.ACTION_IDX_STOP and curr_bbox in boxes:
                action_idx = ADNetwork.ACTION_IDX_STOP

            if action_idx == ADNetwork.ACTION_IDX_STOP:
                break

            boxes.append(curr_bbox)
        self.stopwatch.stop('tracking.do_action')

        # redetection when tracking failed
        new_score = 0.0
        if not is_tracked:
            self.failed_cnt += 1
            # run redetection callback function
            new_box, new_score = self.callback_redetection(curr_bbox, img)
            if new_box is not None:
                curr_bbox = new_box
                patch = commons.extract_region(img, curr_bbox)
            _logger.debug('redetection success=%s' % (str(new_box is not None)))

        # save samples
        if is_tracked or new_score > ADNetConf.g()['predict']['thresh_success']:
            self.stopwatch.start('tracking.save_samples.roi')
            imgwh = Coordinate.get_imgwh(img)
            pos_num, neg_num = ADNetConf.g()['finetune']['pos_num'], ADNetConf.g()['finetune']['neg_num']
            pos_boxes, neg_boxes = curr_bbox.get_posneg_samples(
                imgwh, pos_num, neg_num, use_whole=False,
                pos_thresh=ADNetConf.g()['finetune']['pos_thresh'],
                neg_thresh=ADNetConf.g()['finetune']['neg_thresh'],
                uniform_translation_f=2,
                uniform_scale_f=5
            )
            self.stopwatch.stop('tracking.save_samples.roi')
            self.stopwatch.start('tracking.save_samples.feat')
            feats = self._get_features([commons.extract_region(img, box) for i, box in enumerate(pos_boxes)])
            for box, feat in zip(pos_boxes, feats):
                box.feat = feat
            feats = self._get_features([commons.extract_region(img, box) for i, box in enumerate(neg_boxes)])
            for box, feat in zip(neg_boxes, feats):
                box.feat = feat
            pos_lb_action = BoundingBox.get_action_labels(pos_boxes, curr_bbox)
            self.histories.append((pos_boxes, neg_boxes, pos_lb_action, np.copy(img), self.iteration))

            # clear old ones
            self.histories = self.histories[-ADNetConf.g()['finetune']['long_term']:]
            self.stopwatch.stop('tracking.save_samples.feat')

        # online finetune
        if self.iteration % ADNetConf.g()['finetune']['interval'] == 0 or is_tracked is False:
            img_pos, img_neg = [], []
            pos_boxes, neg_boxes, pos_lb_action = [], [], []
            pos_term = 'long_term' if is_tracked else 'short_term'
            for i in range(ADNetConf.g()['finetune'][pos_term]):
                if i >= len(self.histories):
                    break
                pos_boxes.extend(self.histories[-(i+1)][0])
                pos_lb_action.extend(self.histories[-(i+1)][2])
                img_pos.extend([self.histories[-(i+1)][3]]*len(self.histories[-(i+1)][0]))
            for i in range(ADNetConf.g()['finetune']['short_term']):
                if i >= len(self.histories):
                    break
                neg_boxes.extend(self.histories[-(i+1)][1])
                img_neg.extend([self.histories[-(i+1)][3]]*len(self.histories[-(i+1)][1]))
            self.stopwatch.start('tracking.online_finetune')
            self._finetune_fc(
                (img_pos, img_neg), pos_boxes, neg_boxes, pos_lb_action,
                ADNetConf.get()['finetune']['learning_rate'],
                ADNetConf.get()['finetune']['iter']
            )
            _logger.debug('finetuned')
            self.stopwatch.stop('tracking.online_finetune')

        cv2.imshow('patch', patch)
        return curr_bbox

    def redetection_by_sampling(self, prev_box, img):
        """
        default redetection method
        """
        imgwh = Coordinate.get_imgwh(img)
        translation_f = min(1.5, 0.6 * 1.15**self.failed_cnt)
        candidates = prev_box.gen_noise_samples(imgwh, 'gaussian', ADNetConf.g()['redetection']['samples'],
                                                gaussian_translation_f=translation_f)

        scores = []
        for c_batch in commons.chunker(candidates, ADNetRunner.MAX_BATCHSIZE):
            samples = [commons.extract_region(img, box) for box in c_batch]
            classes = self.persistent_sess.run(
                self.adnet.layer_scores,
                feed_dict={
                    self.adnet.input_tensor: samples,
                    self.adnet.action_history_tensor: [commons.onehot_flatten(self.action_histories_old)]*len(c_batch),
                    self.tensor_is_training: False
                }
            )
            scores.extend([x[1] for x in classes])
        top5_idx = [i[0] for i in sorted(enumerate(scores), reverse=True, key=lambda x: x[1])][:5]
        mean_score = sum([scores[x] for x in top5_idx]) / 5.0
        if mean_score >= self.latest_score:
            mean_box = candidates[0]
            for i in range(1, 5):
                mean_box += candidates[i]
            return mean_box / 5.0, mean_score
        return None, 0.0

    def __del__(self):
        self.persistent_sess.close()

if __name__ == '__main__':
    ADNetConf.get('./conf/repo.yaml')

    random.seed(1258)
    np.random.seed(1258)
    tf.set_random_seed(1258)

    fire.Fire(ADNetRunner)

世界杯足球运动员的实时追踪_第1张图片

你可能感兴趣的:(世界杯足球运动员的实时追踪)