- VLLM专题(三十五)—多模态数据处理
AI专题精讲
大模型专题系列人工智能
为了在vLLM中实现各种优化,例如分块预填充和前缀缓存,我们使用BaseMultiModalProcessor来提供占位符特征标记(例如)与多模态输入(例如原始输入图像)之间的对应关系,基于HF处理器的输出。以下是BaseMultiModalProcessor的主要特性:提示更新检测HF处理器的主要职责之一是使用占位符标记更新提示。例如:在字符串的开头插入特征占位符标记(例如…,其数量等于特征大小
- Elasticsearch:为推理端点配置分块设置
Elastic 中国社区官方博客
ElasticsearchAIElasticelasticsearch大数据搜索引擎人工智能全文检索数据库ai
推理端点对一次可处理的文本量有限,具体取决于模型的输入容量。分块(Chunking)是指将输入文本拆分成符合这些限制的小块的过程,在将文档摄取到semantic_text字段时会进行分块。分块不仅有助于保持输入文本在可处理范围内,还能使内容更加易读。相比返回一整篇长文档,在搜索结果中提供最相关的文本片段更有价值。每个分块都会包含文本片段以及从中生成的对应嵌入。默认情况下,文档会被拆分为句子(sen
- 学习pear的Image_Graph包的一些笔记
stone5
graphimageplotdataset图形extension
image_graph中的对象类型及结构Posted三月31st,2007bystone5image_graph中的对象类型及结构graph----------总图形plotarea-------绘图区plot-------------图块dataset--------数据集point------------点一个图形中多个图形区的分块Posted三月31st,2007bystone5pear来研
- 基于内容分块(CDC)的重删算法详解:原理、实现与优化
这个懒人
算法
引言在数据爆炸式增长的时代,存储资源优化成为技术领域的重要课题。重复数据删除(Deduplication)技术通过消除冗余数据副本,可将存储需求降低90%以上。其中基于内容分块(Content-DefinedChunking,CDC)算法凭借其对数据局部修改的强适应性,成为企业级备份系统、云存储服务的核心技术。一、CDC算法核心原理1.1动态分块vs静态分块传统固定分块算法将数据按固定大小(如4K
- 场景题:100G的文件里有很多id,用1G内存的机器排序,怎么做?
海量数据排序思路核心方案:外排序(分治+多路归并)MapReduce外排序是指数据量太大,无法全部加载到内存中,需要将数据分成多个小块进行排序,然后将排序后的小块合并成一个大的有序块1.分块排序(Map阶段)分块策略按1G内存容量限制,将100G文件拆分为200个500MB分块(保留内存用于排序计算和系统开销)内存排序每个分块加载至内存后:①使用快速排序(时间复杂度O(nlogn))②去重优化:若
- Stable Diffusion/DALL-E 3图像生成优化策略
云端源想
stablediffusion
StableDiffusion的最新版本或社区开发的插件,可以补充这些信息以保持内容的时效性。云端源想1.硬件与部署优化(进阶)显存压缩技术使用--medvram或--lowvram启动参数(StableDiffusionWebUI),通过分层加载模型降低显存占用(适合6GB以下显卡)。分块推理(TiledDiffusion):将图像分割为512×512区块,逐块生成后无缝拼接,支持4096×40
- 从零开始:基于LLM大模型构建智能应用程序的完整指南
AI天才研究院
ChatGPT人工智能
目录从零开始:基于LLM大模型构建智能应用程序的完整指南什么是LLM大模型如何利用LLM大模型构建智能应用程序1.收集和准备数据2.构建LLM大模型3.集成和部署4.监测和维护使用特定于私有领域的数据增强LLM检索增强生成(RAG)数据预处理、分块和检索技术零射击与少量射击提示和指导LLM大模型使用LLM进行推荐和聚类任务改善组织内的搜索体验考虑以上所有解锁的利基应用程序参考最近,围绕大型语言模型
- AI学习指南RAG篇(7)-RAG知识库构建
俞兆鹏
AI学习指南ai
文章目录一、引言二、知识库构建过程1.数据收集1.1数据来源1.2示例代码2.预处理2.1数据清洗2.2示例代码2.3数据格式转换2.4示例代码3.分块3.1分块的目的3.2分块策略3.3示例代码4.向量化4.1向量化的目的4.2示例代码4.3向量数据库4.4示例代码三、总结一、引言在RAG(Retrieval-AugmentedGeneration,检索增强生成)系统中,知识库的构建是至关重要的
- RAG检索增强生成(Retrieval-Augmented Generation)介绍(双模态架构:检索子系统、生成子系统)实现知识获取与内容生成的协同
Dontla
大模型LLM人工智能架构
文章目录增强生成(RAG)技术:原理、架构与前沿实践1.RAG技术架构剖析1.1技术融合范式-**检索子系统**-**生成子系统**2.核心组件与工作流程2.1数据预处理管线-**多粒度分块策略**-**特征增强技术**2.2混合检索引擎3.性能优化关键路径3.1检索质量提升-**多阶段精排模型**:-**动态阈值策略**:3.2生成控制技术-**结构化prompt模板**:-**知识验证机制**
- 从零手撸工业级Qt文件传输系统:TCP粘包/断点续传/SSL加密全解
十年编程老舅
QT开发qt项目qt项目实战c++项目qt计算机毕设项目qt文件传输qt教程
很多初学者都会遇到这个坎,如何将Windows数据结构、网络编程等知识整合为完整的项目。本文将深入解析一个基于C++Qt开发的企业级文件传输系统,涵盖TCP通信、断点续传、SSL加密、SQLite持久化等核心技术。(项目源码来文章底部拿)一、系统核心功能1.基础通信能力双工消息传输(支持中文字符)文件传输进度条同步(4KB分块策略)传输完整性验证(安装包可执行性测试)2.高级特性断点续传(记录已传
- 主流加解密算法全景解析:对称、非对称与哈希算法详解
JT-999
网络哈希算法网络算法
主流加解密算法通常分为以下三大类,每类都有其独特的特点和应用场景,下面我们详细介绍这三类算法的原理、优势、缺陷以及典型应用场景:1.对称加密算法原理对称加密算法是指加密和解密都使用同一个密钥。发送方和接收方事先共享一个秘密密钥,利用这个密钥将明文转换为密文,加密后的数据只有用相同的密钥才能解密恢复原文。其基本过程通常包括:明文分块(如果是分组加密算法);对每个数据块进行一系列变换(如置换、替换、异
- Java后端面试八股文:系统化学习指南,告别零散知识点
钢板兽
高频八股java面试后端jvmredismysqllinux
Java后端面试中的八股大家通常都会参考小林或者JavaGuide,但是这些八股内容太多了,字数成万,我们基本上是看一遍忘一遍,自己也曾经根据网上面经整理过自己的八股题库,通篇共有五万字,知识点也很散,所以想把每个部分的内容系统地写成文章,比如JVM部分的八股,我会写两到三篇的文章帮助自己系统地理解这部分的八股知识,所以这篇文章会按照分块整理自己发布过的所有八股文章,这篇文章后续也会持续更新,也起
- 鸿蒙文件传输三方库上线开源鸿蒙社区 十行代码实现大文件高速传输
互联网
近日,华为在OpenHarmony社区上线了“super_fast_file_trans”文件传输三方库(以下简称“SFFT”)。这一三方库的推出,为开发者提供了一套支持大文件多线程并发分块下载、断点续下、分片上传、断点续传、自动重试等多个特性的高性能文件传输解决方案,让开发者开箱即用,轻松实现高效稳定的文件传输功能。在应用开发过程中,许多场景涉及到大文件的传输,尤其是在文件上传和下载的过程中,开
- 山海经——AI思路
Cool_(wly)_Dino
deepseekc++
好的,我需要帮助用户解决这个关于《山海经》的问题。根据用户的问题描述,老师希望找到从第a座山到第b座山之间的某段路径(i,j),使得这段路径上的喜恶度之和最大。用户之前已经得到过一个使用分块算法处理区间最大值查询的C++代码,但现在的问题似乎有所不同,因为这里需要的是最大子数组和,而不是简单的区间最大值。首先,我要确认用户的具体需求。用户提到每座山只能到达下一座山,也就是路径是连续的,所以问题转化
- 详解LLM 核心技能-大文本分块技术
大模型入门学习
人工智能大模型学习AI大模型ai
在构建LLM相关应用程序的背景下,分块是将大段文本分解成较小片段的过程。这是一项必不可少的技术,有助于优化我们使用LLM嵌入内容后从[矢量数据库]获取的内容的相关性。在这篇博文中,我们将探讨它是否以及如何有助于提高LLM相关应用程序的效率和准确性。分块的主要原因是为了确保我们嵌入的内容尽可能少地包含噪音,同时仍然具有语义相关性。例如,在语义搜索中,我们会对文档语料库进行索引,每个文档都包含有关特定
- 按键精灵找图的原理及影响找图效率的因素
学自动化的小白
计算机视觉图像处理人工智能
按键精灵找图的原理主要是基于图像识别算法,具体涉及像素点的颜色值和位置比对。以下是对该原理的详细解释:一、图像像素点的基本概念图像是由一个个颜色块组成的,这些颜色块非常小,通常看不出有明显的分块界限。这些带有颜色的小方块就是图像的像素点。像素点是在一个二维平面上排列的,分为横向和纵向,大量的像素点排列在一起就组成了一张图像。二、找图原理的具体步骤确定找图区域:按键精灵在屏幕上指定的区域内进行找图操
- RagFlow专题三、RagFlow 关键技术(向量数据库、文档分块、Prompt 设计与召回排序优化)
伯牙碎琴
大模型prompt大模型AIRagRagFlow
深入解析RagFlow关键技术:向量数据库、文档分块、Prompt设计与召回排序优化在前一篇文章中,我们详细探讨了RagFlow的核心架构,包括数据检索、语义搜索(BM25&向量搜索)以及知识融合,并了解了如何通过RagFlow机制优化信息检索和生成质量。本篇文章将深入解析RagFlow的关键技术,包括:向量数据库(FAISS、Milvus、Elasticsearch)——负责高效的语义检索与存储
- 快速上手 Unstructured:安装、Docker部署及PDF文档解析示例
大F的智能小课
大模型理论和实战dockerpdf容器
1.核心概念1.1Unstructured简介Unstructured是一个强大的Python库,专注于从非结构化数据中提取和预处理文本信息,广泛应用于PDF、Word文档、HTML等多种格式的文件处理。其核心功能包括分区、清理、暂存和分块,能够将复杂的非结构化文档转换为结构化输出,为后续的自然语言处理任务提供高质量的数据支持。分区功能:Unstructured能够将原始文档分解为标准的结构化元素
- Everything-文件查找软件制作
风栖柳白杨
软件制作pyqt数据库YOLO
写在前边:随着电脑里边的东西越来越多,很多东西放的杂七杂八;今天实在忍不了了,一怒之下,突发奇想,做一个类似Everything的文件查找软件,现在共享出来。一、软件展示二、源码展示与讲解1、所用到的组件(1)2、源码分块细嗦(1)导入模块importsys#通常用于操作系统相关的任务,例如命令行参数和系统退出importos#用于与操作系统交互,例如文件和目录操作importfnmatch#用于
- VIT(Vision Transformer)【超详细 pytorch实现
周玄九
计算机视觉transformer深度学习人工智能
CNN的局限性:传统的CNN通过局部卷积核提取特征,虽然可以通过堆叠多层卷积扩大感受野,但仍然依赖于局部信息的逐步聚合,难以直接建模全局依赖关系。ViT的优势:ViT使用自注意力机制(Self-Attention),能够直接捕捉图像中所有patch(图像块)之间的全局关系。这种全局建模能力在处理需要长距离依赖的任务(如图像分类、目标检测)时表现更好。全流程图像预处理+分块图像尺寸标准化,如(224
- 【RAG系列】知识加工的艺术 - 文档预处理实战手册
什么都想学的阿超
原理概念#深度学习深度学习RAG人工智能
知识加工的艺术-文档预处理实战手册原始文档文档拆分结构化数据非结构化数据表格处理器文本分割器格式化CSV语义分块知识图谱一、文本拆分的积木法则1.1机械分割vs语义理解固定窗口上下文感知段落拆分...模型参数量达到175B时...语义拆分模型参数量......175B时表现分割策略对比方法优点缺点代码示例固定窗口O(1)时间复杂度割裂技术术语text.split("\n\n")滑动窗口保留局部上下
- LM_Funny-2-01 递推算法:从数学基础到跨学科应用
王旭·wangxu_a
算法
目录第一章递推算法的数学本质1.1形式化定义与公理化体系定理1.1(完备性条件)1.2高阶递推的特征分析案例:Gauss同余递推4第二章工程实现优化技术2.1内存压缩的革新方法滚动窗口策略分块存储技术2.2异构计算加速方案GPU并行递推量子计算原型第三章跨学科应用案例3.1密码学中的递推构造混沌流密码系统3.2生物信息学的序列分析DNA甲基化预测第一章递推算法的数学本质1.1形式化定义与公理化体系
- 14.11 LangChain VectorStore 架构解析:构建高效大模型数据管道的核心技术
少林码僧
AI大模型应用实战专栏langchain架构wpf
LangChainVectorStore架构解析:构建高效大模型数据管道的核心技术关键词:LangChainVectorStore、向量数据库集成、语义检索优化、文档分块策略、相似度搜索算法1.VectorStore的核心定位与技术架构LangChain数据处理全流程:
- c语言之分块打印
我不是程序员~~~~
C&C++java算法前端
intmain(){intbufsize=6;char*data=(char*)"1234567890";chartemp[1024]={0};intdata_len=strlen(data);for(inti=0;i<(data_len/bufsize+1);i++){memset(temp,0,sizeof(temp));if(i==(data_len/bufsize)){if(data_le
- 利用sql循环语句实现基本的数据累加和阶乘
Dream it possible!
sql
求1+2+3+…+100的和:declare@iint,@sumint;//declare声明变量set@i=0;//set实现赋值,并且只能为一个变量赋值set@sum=0;while@i<=100//在使用时须写@begin//begin~end实现分块set@sum+=@i;//在对变量赋值时需用setset@i+=1;endprint‘1+2+3+…+100=’+str(@sum);//输
- HTTP.
yourkin666
计网八股http网络协议网络
HTTP主要讲一下状态码和缓存机制1xx类状态码属于提示信息,是协议处理中的一种中间状态,如http升级为websocket,会提示1xx2xx类状态码表示服务器成功处理了客户端的请求「200OK」是最常见的成功状态码「204NoContent」也是常见的成功状态码,但没返回任何数据「206PartialContent」服务器成功处理了部分请求,并返回了资源的一部分(HTTP分块下载或断点续传)3
- 简化版奇异值分解(SVD)方法详解
DuHz
数理统计学知识机器学习人工智能算法信息与通信信号处理
简化版奇异值分解(SVD)方法详解奇异值分解(SVD)是一个强大的矩阵分解工具,广泛应用于数据降维、图像压缩、机器学习等领域。然而,对于大规模数据或高维矩阵,计算和存储的开销非常大,因此提出了多种简化版的SVD方法。这些简化版方法在保证解的精度的同时,能够显著减少计算量和内存占用。本文将详细介绍几种简化版SVD方法,包括经济型SVD、随机化SVD、增量SVD、分块SVD和偏最小二乘法(PLS),并
- 一文读懂RAG
wangziling123456
人工智能深度学习
目录一、RAG是什么?二、为什么需要RAG?三、RAG的特点四、基础RAG架构数据准备阶段应用阶段:五、RAG分类基础RAG(NaiveRAG)缺点高级RAG(AdvancedRAG)模块化RAG(ModularRAG)六、RAG(检索增强生成)vsFine-Tuning(微调)八、高效和准确的检索1)来源检索源的类型检索单元的粒度2)索引优化1.分块策略2.元数据附件3.结构指数3)查询优化1.
- CSS(盒子模型三,浮动)
小小fw
csscss3html
浮动(float)浮动是一种布局手段,会使元素脱离文档流元素在文档流的时候,会分块元素,行内元素,行内块元素,各自都有一定的特点设置元素浮动,可以用float样式可选值:none默认值,不浮动left向左浮动right向右浮动设置浮动后的一些特点:(第一类特点)1、设置元素浮动后,元素会脱离文档流,就不会再占据原来在文档流的位置浮动元素后面的元素就向上2、设置元素浮动后,元素会尽可能向左或者向右浮
- pandas习题 070:将数据库中大数据分块读取计算
花花 Show Python
pandas强化练习题pandas数据库大数据
编码题)将以下sqlite3数据库中的数据分块读取,并计算value列所有值的和。importpandasaspdimportsqlite3importrandom#创建一个SQLite内存数据库,并生成示例数据conn=sqlite3.connect(':memory:')cursor=conn.cursor()
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo