- 【TensorRT】TensorRT及加速原理
浩瀚之水_csdn
tensorrt
一、TensorRT架构概览TensorRT是NVIDIA推出的高性能推理优化器,专为GPU加速设计。其核心架构分为三层:前端解析器支持ONNX/UFF/Caffe等格式的模型解析执行格式验证和初步结构优化优化引擎核心优化层(层融合、精度校准、内存优化等)生成优化后的计算图(OptimizedGraph)运行时环境管理GPU内存分配执行优化后的计算图二、核心加速原理(8大关键技术)1.层融合(La
- Redis+Caffeine双层缓存策略对比与实践指南
浅沫云归
后端技术栈小结RedisCaffeine缓存
Redis+Caffeine双层缓存策略对比与实践指南在高并发场景下,缓存是提升系统性能和并发处理能力的关键手段。常见的缓存方案包括远程缓存(如Redis)和本地缓存(如Caffeine)。单层缓存各有优劣,结合两者优势的双层缓存架构已成为生产环境中的最佳实践。本文将基于SpringBoot,从方案对比分析出发,深入探讨Redis、本地Caffeine与双层缓存的实现与性能差异,并给出选型建议与实
- spring boot + caffeine使用
月光一族吖
springbootspringjava
一、Caffeine缓存背景Caffeine是一个高性能、可扩展的Java缓存库,由Google的BenManes开发。Caffeine基于ConcurrentHashMap设计,采用了近似LRU(LeastRecentlyUsed,最近最少使用)算法,以实现高速缓存淘汰策略。Caffeine广泛应用于各类Java项目中,作为一种提高数据读取性能的优秀解决方案。二、Caffeine缓存优点与缺点优
- 两级缓存 Caffeine + Redis 架构:原理、实现与实践
大只鹅
缓存redis架构
一、前言在高性能服务架构设计里,缓存是关键环节。常规做法是将热点数据存于Redis/MemCache等远程缓存,缓存未命中时再查数据库,以此提升访问速度、降低数据库压力。随着发展,架构有了改进,部分场景下单纯远程缓存不够,需结合本地缓存(如Guavacache、Caffeine),形成本地缓存(一级缓存)+远程缓存(二级缓存)的两级缓存架构,进一步提升程序响应与服务性能,其基础访问流程如下(暂不考
- Ehcache、Caffeine、Spring Cache、Redis、J2Cache、Memcached 和 Guava Cache 的主要区别
MonkeyKing.sun
springredismemcached
主流缓存技术Ehcache、Caffeine、SpringCache、Redis、J2Cache、Memcached和GuavaCache的主要区别,涵盖其架构、功能、适用场景和优缺点等方面:Ehcache类型:本地缓存(JVM内存缓存)特点:轻量级,运行在JVM内部,易于集成到Java应用中。支持堆内、堆外和磁盘缓存,适合处理中小型数据集。提供丰富的缓存配置,如TTL(生存时间)、TTI(空闲时
- 《高并发系统性能优化三板斧:缓存 + 异步 + 限流》
猕员桃
10篇关于分布式和高并发性能优化缓存
高并发系统性能优化三板斧:缓存+异步+限流引言在互联网应用的高并发场景下,系统性能面临巨大挑战。以某电商平台会员活动为例,活动期间瞬时QPS可达10万+,若未进行有效优化,服务器将迅速崩溃。本文从缓存、异步、限流三个核心维度,结合实际案例详细解析高并发系统的性能优化策略,并分享全链路压测与问题定位的实战经验。一、缓存策略分层:从本地到分布式的立体防护1.1本地缓存选型与实战(Caffeine)本地
- 2.6 Spring Boot缓存实战:Redis与Caffeine性能对比
SpringBoot缓存实战:Redis与Caffeine深度性能对比一、缓存技术选型核心指标维度Redis(分布式)Caffeine(本地)数据存储位置独立内存服务器应用进程堆内存数据一致性强一致(集群版)最终一致(需额外同步)网络开销存在TCP/IP通信无网络延迟数据容量支持TB级存储受限于JVM堆大小数据结构支持5种核心数据结构仅Key-Value结构持久化能力RDB/AOF需结合其他存储二
- 深入实践Caffeine+Redis两级缓存架构:从原理到高可用设计
搬砖的小熊猫
缓存redis架构
一、为何需要两级缓存架构?在分布式系统中,Redis作为分布式缓存已广泛应用。但当系统面临超高并发读取(如热点商品详情页访问)或超低延迟要求(如金融行情数据推送)时,纯远程缓存面临两大瓶颈:网络IO开销:每次Redis访问需10-50ms的网络延迟带宽瓶颈:单节点Redis吞吐量上限约10万QPS通过引入Caffeine本地缓存作为一级缓存,Redis作为二级缓存,可实现:命中未命中命中未命中客户
- python opencv rgb_opencv-python的RGB与BGR互转方式
weixin_39798497
pythonopencvrgb
一、格式转换opencv读取图片的默认像素排列是BGR,需要转换。PIL库是RGB格式。caffe底层的图像处理是基于opencv,其使用的颜色通道顺序与也是BGR(Blue-Green-Red),而日常图片存储时颜色通道顺序是RGB。在Python中,将RGB顺序的图像转成BGR顺序,需要调整channeldimension的各颜色通道顺序。方法1:img=cv2.imread("001.jpg
- caffe之利用mnist数据集训练好的lenet_iter_10000.caffemodel模型测试一张自己的手写体数字
xunan003
深度学习caffe
一、前沿写这篇博文,是因为一开始在做《21天学习caffe》第6天6.4练习题1的时候看着自己搜索的博文,在不理解其根本的情况下做的,结果显然是错的。在接下来阅读完源代码之后,在第10天学习完caffemodelzoo之后,明白了其中原理,反过来再去做那个习题,一开始在网上搜索并没有完完整整解释整个过程的一篇博文,而是写的不知所云,本着我们初学者互相共享的精神,也方便自己查阅,特详细写一下,将自己
- caffe安装:基于anaconda3---python3.6, linux, 仅CPU
喵酱ooo
目标检测caffeanaconda3python3.6linuxCPU
caffe安装:基于anaconda3---python3.6,linux,仅CPUcaffe安装安装Anaconda3下载caffe配置caffe的Makefile.config安装libboost(基于python3.6)的库编译caffecaffe安装安装Anaconda3下载:Anaconda3-5.0.1-Linux-x86_64.sh默认路径安装(最终安装位置为/home/usenam
- ubuntu 编译caffe makefile.config
AI算法网奇
win/ubuntu
这个是我以前总结的:sudoapt-getinstall-ylibopencv-devpython-opencvsudoapt-getinstall-ybuild-essentialcmakegitpkg-configsudoapt-getinstall-ylibatlas-base-devsudoapt-getinstall-ylibgflags-devlibgoogle-glog-devlib
- caffe中Makefile.config详解
《一夜飘零》
##Refertohttp://caffe.berkeleyvision.org/installation.html#Contributionssimplifyingandimprovingourbuildsystemarewelcome!#cuDNNaccelerationswitch(uncommenttobuildwithcuDNN).#USE_CUDNN:=1"CuDNN是NVIDIA专门
- 【性能飙升】Caffeine缓存框架:SpringBoot的高性能秘籍!
码农Q!
程序员JavaIT缓存springbootspringwindows开发语言javalist
高性能Java本地缓存Caffeine框架介绍及在SpringBoot中的使用代码加详解1.引包importcom.github.benmanes.caffeine.cache.Cache;importcom.github.benmanes.caffeine.cache.Caffeine;importorg.springframework.beans.factory.annotation.Auto
- 一站式讲解本地缓存Caffeine
想用offer打牌
后台缓存缓存
文章目录theme:condensed-night-purple引言本地缓存的必要性多级缓存访问流程使用Caffeine作为本地缓存️添加**SpringCache和Guava依赖**配置Caffeine缓存启用缓存使用缓存注解总结❤️theme:condensed-night-purple引言上次我们讲了本地缓存guava,那么有没有比它更加优秀的本地缓存呢?有的,兄弟,有的。这次我们来讲本地
- 开放词汇检测分割YOLOE从pytorch到caffe
wangxiaobei2017
深度学习训练与移植pytorchcaffe人工智能
开放词汇检测分割YOLOE从pytorch到caffe0.前沿开放词汇检测的概念CLIP模型1.YOLOE环境配置1.1虚拟环境1.2YOLOE模型推理测试1.2.1文本提示检测和分割测试1.2.2无提示检测和分割2.YOLOE网络结构分析2.1网络结构概述2.2可重参数化区域-文本对齐(Re-parameterizableregion-textalignment:RepRTA)2.3语义激活视觉
- 本地缓存Caffeine的基本使用
海光之蓝
工具类spring
1.本地缓存有ehcache,guavacache,caffein这几种常用的实现,下面介绍caffeine在springboot中的使用caffeine官网:github-caffeinjsr-107缓存规范与spring的对照:jsr-107缓存规范与spring的对照caffeine-plus:caffeine-plus单独使用:2.添加依赖com.github.ben-manes.caff
- Web 架构之缓存策略实战:从本地缓存到分布式缓存
互联网搬砖工老肖
web架构原力计划前端架构缓存
文章目录一、思维导图二、正文内容(一)本地缓存1.简介2.常见实现3.使用场景4.优缺点(二)分布式缓存1.简介2.常见实现3.使用场景4.优缺点5.缓存问题及解决方案三、总结一、思维导图缓存策略实战本地缓存分布式缓存简介常见实现使用场景优缺点GuavaCacheCaffeine简介常见实现使用场景优缺点RedisMemcached缓存穿透缓存击穿缓存雪崩解决方案解决方案解决方案二、正文内容(一)
- 解锁Java多级缓存:性能飞升的秘密武器
bxlj_jcj
缓存面试架构缓存架构java面试
一、引言文末有彩蛋在当今高并发、低延迟的应用场景中,传统的单级缓存策略往往难以满足性能需求。随着系统规模扩大,数据访问的瓶颈逐渐显现,如何高效管理缓存成为开发者面临的重大挑战。多级缓存架构应运而生,通过分层缓存设计(如本地缓存+分布式缓存+后端存储),显著减少网络开销、降低数据库压力,成为提升Java应用性能的“秘密武器”。本文将深入剖析多级缓存的核心理念,结合Caffeine、Redis等主流技
- Spring Boot缓存组件Ehcache、Caffeine、Redis、Hazelcast
一只帆記
SpringBoot缓存springbootredis
一、SpringBoot缓存架构核心SpringBoot通过spring-boot-starter-cache提供统一的缓存抽象层:业务代码CacheAbstractionCacheManagerCacheImplementationEhcacheCaffeineRedisHazelcast二、主流缓存工具深度对比特性EhcacheCaffeineRedisHazelcast类型本地缓存本地缓存分
- 【Redis】热点key问题,的原因和处理,一致性哈希,删除大key的方法
{⌐■_■}
redisredis哈希算法数据库
热点Key指单个Key被高并发访问(如爆款商品),导致Redis压力骤增。解决方案应针对“单个Key高并发”:分片缓存:将热点Key分散到不同Redis节点(如按一致性哈希算法分片)。本地缓存:在应用层缓存热点数据(如Caffeine),减少Redis压力。增加缓存副本:为热点数据增加缓存副本,将热点数据复制到多个缓存节点上,分散访问压力。(例如,使用Redis的主从复制,将热点数据存储在多个从节
- 在Windows系统下安装caffe
sunmingliu
最近,在怼着球面卷积神经网络源码看,虽然不出意外的看傻了,但caffe的安装还是需要记录一下的。一开始我是想在Linux系统下实现的,毕竟一开始我把电脑一大块空间给了Linux系统。于是我先颠颠的照着网上的教程把anaconda先安装了。anaconda在Linux下的安装还顺道下了一个COCO数据集,官网没法正常打开,就找到了一个不需要的下载方法,贴一个链接:简单的MSCOCO数据集下载方法然后
- 深度学习FPGA开发方式
jack_201316888
FPGAAI
https://blog.csdn.net/weixin_35729512/article/details/79763952FPGA深度学习的方向概述传统的CNN(Tensorflow、caffe)是在GPU、CPU上面进行的,但因为其功耗高、散热不好、价格昂贵。但是在单纯的FPGA这类芯片上进行深度学习类的算法,往往开发难度大,开发周期漫长,不适合CNN算法的实现。CNN算法的步骤划分,训练(P
- Caffeine 深度解析:从核心原理到生产实践
Pasregret
缓存缓存java面试
Caffeine深度解析:从核心原理到生产实践一、Caffeine核心定位与架构设计1.核心能力矩阵深度解析Caffeine作为Java领域高性能本地缓存库,其设计目标围绕高吞吐量、低延迟、高效内存管理展开,核心能力可从技术特性与业务价值两个维度拆解:缓存策略先进性WindowTinyLfu回收算法:结合时间窗口(Window)与TinyLfu频率统计,相比传统LRU提升10%-15%命中率,尤其
- 多级缓存架构深度解析:从设计原理到生产实践
Pasregret
缓存缓存架构
多级缓存架构深度解析:从设计原理到生产实践一、多级缓存架构核心定位与设计原则1.架构分层与角色定位多级缓存通过分层存储、流量削峰、数据分级实现性能与成本的平衡,典型三层架构如下:层级代表组件存储介质数据特征命中目标成本级别一级缓存Caffeine/Guava本地堆内存热数据(访问量前10%)70%+高二级缓存Redis远程内存温数据(访问量20%-30%)25%+中三级缓存MySQL/ES磁盘/S
- 搭建Caffeine+Redis多级缓存机制
moxiaoran5753
缓存redis数据库
本地缓存的简单实现方案有HashMap,CucurrentHashMap,成熟的本地缓存方案有Guava与Caffeine,企业级应用推荐下面说下两者的区别1.核心异同对比特性GuavaCacheCaffeine诞生背景GoogleGuava库的一部分(2011年)基于GuavaCache重构的现代缓存库(2015+)性能中等(锁竞争较多)极高(优化并发设计,吞吐量提升5~10倍)内存管理基于LR
- 3.JVM调优与内存管理
zizisuo
java
目录一、缓存场景下的内存管理核心挑战堆内缓存与堆外缓存的取舍•堆内缓存(Caffeine/Guava)的GC压力分析•堆外缓存(EhcacheOffheap/MapDB)的内存泄漏防护•混合缓存架构的性能与资源平衡高并发下的内存分配优化•TLAB(Thread-LocalAllocationBuffer)与缓存对象分配效率•大对象(缓存Value)直接进入老年代的策略•年轻代与老年代比例调优(避免
- OpenCV学习笔记:使用OpenCV的DNN模块调用Caffe进行人脸识别
EbCoder
机器学习-深度学习
在计算机视觉和图像处理领域,人脸识别是一个重要的任务。OpenCV是一个广泛使用的开源计算机视觉库,它提供了强大的功能来处理图像和视频。OpenCV的DNN(深度神经网络)模块允许我们使用已经训练好的深度学习模型进行图像识别任务。本文将介绍如何使用OpenCV的DNN模块调用Caffe框架训练的人脸识别模型。首先,我们需要安装OpenCV和Caffe。确保您已经正确安装了这两个库,并且已经配置好了
- 华为海思系列----昇腾张量编译器(ATC)模型转换工具----入门级使用指南(LINUX版)
不想起名字呢
linuxc++海思ss928atc模型转换
由于官方SDK比较冗余且经常跨文档讲解且SDK整理的乱七八糟,对于新手来说全部看完上手成本较高,本文旨在以简短的方式介绍CAFFE/ONNX模型转om模型,并进行推理的全流程。希望能够帮助到第一次接触华为海思框架的道友们。大佬们就没必要看这种基础文章啦!注:本文所有操作均在WSL(Windows虚拟子系统)上操作的,默认root环境,默认开发板系统为LINUX,所有环境变量均写入bashrc,非虚
- SpringBoot+SpringCache实现两级缓存(Redis+Caffeine)
xfgg
java
1.缓存、两级缓存1.1内容说明Springcache:主要包含springcache定义的接口方法说明和注解中的属性说明springboot+springcache:rediscache实现中的缺陷caffeine简介springboot+springcache实现两级缓存使用缓存时的流程图1.2SpingCachespringcache是spring-context包中提供的基于注解方式使用的
- 插入表主键冲突做更新
a-john
有以下场景:
用户下了一个订单,订单内的内容较多,且来自多表,首次下单的时候,内容可能会不全(部分内容不是必须,出现有些表根本就没有没有该订单的值)。在以后更改订单时,有些内容会更改,有些内容会新增。
问题:
如果在sql语句中执行update操作,在没有数据的表中会出错。如果在逻辑代码中先做查询,查询结果有做更新,没有做插入,这样会将代码复杂化。
解决:
mysql中提供了一个sql语
- Android xml资源文件中@、@android:type、@*、?、@+含义和区别
Cb123456
@+@?@*
一.@代表引用资源
1.引用自定义资源。格式:@[package:]type/name
android:text="@string/hello"
2.引用系统资源。格式:@android:type/name
android:textColor="@android:color/opaque_red"
- 数据结构的基本介绍
天子之骄
数据结构散列表树、图线性结构价格标签
数据结构的基本介绍
数据结构就是数据的组织形式,用一种提前设计好的框架去存取数据,以便更方便,高效的对数据进行增删查改。正确选择合适的数据结构,对软件程序的高效执行的影响作用不亚于算法的设计。此外,在计算机系统中数据结构的作用也是非同小可。例如常常在编程语言中听到的栈,堆等,就是经典的数据结构。
经典的数据结构大致如下:
一:线性数据结构
(1):列表
a
- 通过二维码开放平台的API快速生成二维码
一炮送你回车库
api
现在很多网站都有通过扫二维码用手机连接的功能,联图网(http://www.liantu.com/pingtai/)的二维码开放平台开放了一个生成二维码图片的Api,挺方便使用的。闲着无聊,写了个前台快速生成二维码的方法。
html代码如下:(二维码将生成在这div下)
? 1
&nbs
- ImageIO读取一张图片改变大小
3213213333332132
javaIOimageBufferedImage
package com.demo;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
/**
* @Description 读取一张图片改变大小
* @author FuJianyon
- myeclipse集成svn(一针见血)
7454103
eclipseSVNMyEclipse
&n
- 装箱与拆箱----autoboxing和unboxing
darkranger
J2SE
4.2 自动装箱和拆箱
基本数据(Primitive)类型的自动装箱(autoboxing)、拆箱(unboxing)是自J2SE 5.0开始提供的功能。虽然为您打包基本数据类型提供了方便,但提供方便的同时表示隐藏了细节,建议在能够区分基本数据类型与对象的差别时再使用。
4.2.1 autoboxing和unboxing
在Java中,所有要处理的东西几乎都是对象(Object)
- ajax传统的方式制作ajax
aijuans
Ajax
//这是前台的代码
<%@ page language="java" import="java.util.*" pageEncoding="UTF-8"%> <% String path = request.getContextPath(); String basePath = request.getScheme()+
- 只用jre的eclipse是怎么编译java源文件的?
avords
javaeclipsejdktomcat
eclipse只需要jre就可以运行开发java程序了,也能自动 编译java源代码,但是jre不是java的运行环境么,难道jre中也带有编译工具? 还是eclipse自己实现的?谁能给解释一下呢问题补充:假设系统中没有安装jdk or jre,只在eclipse的目录中有一个jre,那么eclipse会采用该jre,问题是eclipse照样可以编译java源文件,为什么呢?
&nb
- 前端模块化
bee1314
模块化
背景: 前端JavaScript模块化,其实已经不是什么新鲜事了。但是很多的项目还没有真正的使用起来,还处于刀耕火种的野蛮生长阶段。 JavaScript一直缺乏有效的包管理机制,造成了大量的全局变量,大量的方法冲突。我们多么渴望有天能像Java(import),Python (import),Ruby(require)那样写代码。在没有包管理机制的年代,我们是怎么避免所
- 处理百万级以上的数据处理
bijian1013
oraclesql数据库大数据查询
一.处理百万级以上的数据提高查询速度的方法: 1.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
2.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 o
- mac 卸载 java 1.7 或更高版本
征客丶
javaOS
卸载 java 1.7 或更高
sudo rm -rf /Library/Internet\ Plug-Ins/JavaAppletPlugin.plugin
成功执行此命令后,还可以执行 java 与 javac 命令
sudo rm -rf /Library/PreferencePanes/JavaControlPanel.prefPane
成功执行此命令后,还可以执行 java
- 【Spark六十一】Spark Streaming结合Flume、Kafka进行日志分析
bit1129
Stream
第一步,Flume和Kakfa对接,Flume抓取日志,写到Kafka中
第二部,Spark Streaming读取Kafka中的数据,进行实时分析
本文首先使用Kakfa自带的消息处理(脚本)来获取消息,走通Flume和Kafka的对接 1. Flume配置
1. 下载Flume和Kafka集成的插件,下载地址:https://github.com/beyondj2ee/f
- Erlang vs TNSDL
bookjovi
erlang
TNSDL是Nokia内部用于开发电信交换软件的私有语言,是在SDL语言的基础上加以修改而成,TNSDL需翻译成C语言得以编译执行,TNSDL语言中实现了异步并行的特点,当然要完整实现异步并行还需要运行时动态库的支持,异步并行类似于Erlang的process(轻量级进程),TNSDL中则称之为hand,Erlang是基于vm(beam)开发,
- 非常希望有一个预防疲劳的java软件, 预防过劳死和眼睛疲劳,大家一起努力搞一个
ljy325
企业应用
非常希望有一个预防疲劳的java软件,我看新闻和网站,国防科技大学的科学家累死了,太疲劳,老是加班,不休息,经常吃药,吃药根本就没用,根本原因是疲劳过度。我以前做java,那会公司垃圾,老想赶快学习到东西跳槽离开,搞得超负荷,不明理。深圳做软件开发经常累死人,总有不明理的人,有个软件提醒限制很好,可以挽救很多人的生命。
相关新闻:
(1)IT行业成五大疾病重灾区:过劳死平均37.9岁
- 读《研磨设计模式》-代码笔记-原型模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* Effective Java 建议使用copy constructor or copy factory来代替clone()方法:
* 1.public Product copy(Product p){}
* 2.publi
- 配置管理---svn工具之权限配置
chenyu19891124
SVN
今天花了大半天的功夫,终于弄懂svn权限配置。下面是今天收获的战绩。
安装完svn后就是在svn中建立版本库,比如我本地的是版本库路径是C:\Repositories\pepos。pepos是我的版本库。在pepos的目录结构
pepos
component
webapps
在conf里面的auth里赋予的权限配置为
[groups]
- 浅谈程序员的数学修养
comsci
设计模式编程算法面试招聘
浅谈程序员的数学修养
- 批量执行 bulk collect与forall用法
daizj
oraclesqlbulk collectforall
BULK COLLECT 子句会批量检索结果,即一次性将结果集绑定到一个集合变量中,并从SQL引擎发送到PL/SQL引擎。通常可以在SELECT INTO、
FETCH INTO以及RETURNING INTO子句中使用BULK COLLECT。本文将逐一描述BULK COLLECT在这几种情形下的用法。
有关FORALL语句的用法请参考:批量SQL之 F
- Linux下使用rsync最快速删除海量文件的方法
dongwei_6688
OS
1、先安装rsync:yum install rsync
2、建立一个空的文件夹:mkdir /tmp/test
3、用rsync删除目标目录:rsync --delete-before -a -H -v --progress --stats /tmp/test/ log/这样我们要删除的log目录就会被清空了,删除的速度会非常快。rsync实际上用的是替换原理,处理数十万个文件也是秒删。
- Yii CModel中rules验证规格
dcj3sjt126com
rulesyiivalidate
Yii cValidator主要用法分析:
yii验证rulesit 分类: Yii yii的rules验证 cValidator主要属性 attributes ,builtInValidators,enableClientValidation,message,on,safe,skipOnError
 
- 基于vagrant的redis主从实验
dcj3sjt126com
vagrant
平台: Mac
工具: Vagrant
系统: Centos6.5
实验目的: Redis主从
实现思路
制作一个基于sentos6.5, 已经安装好reids的box, 添加一个脚本配置从机, 然后作为后面主机从机的基础box
制作sentos6.5+redis的box
mkdir vagrant_redis
cd vagrant_
- Memcached(二)、Centos安装Memcached服务器
frank1234
centosmemcached
一、安装gcc
rpm和yum安装memcached服务器连接没有找到,所以我使用的是make的方式安装,由于make依赖于gcc,所以要先安装gcc
开始安装,命令如下,[color=red][b]顺序一定不能出错[/b][/color]:
建议可以先切换到root用户,不然可能会遇到权限问题:su root 输入密码......
rpm -ivh kernel-head
- Remove Duplicates from Sorted List
hcx2013
remove
Given a sorted linked list, delete all duplicates such that each element appear only once.
For example,Given 1->1->2, return 1->2.Given 1->1->2->3->3, return&
- Spring4新特性——JSR310日期时间API的支持
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- 浅谈enum与单例设计模式
247687009
java单例
在JDK1.5之前的单例实现方式有两种(懒汉式和饿汉式并无设计上的区别故看做一种),两者同是私有构
造器,导出静态成员变量,以便调用者访问。
第一种
package singleton;
public class Singleton {
//导出全局成员
public final static Singleton INSTANCE = new S
- 使用switch条件语句需要注意的几点
openwrt
cbreakswitch
1. 当满足条件的case中没有break,程序将依次执行其后的每种条件(包括default)直到遇到break跳出
int main()
{
int n = 1;
switch(n) {
case 1:
printf("--1--\n");
default:
printf("defa
- 配置Spring Mybatis JUnit测试环境的应用上下文
schnell18
springmybatisJUnit
Spring-test模块中的应用上下文和web及spring boot的有很大差异。主要试下来差异有:
单元测试的app context不支持从外部properties文件注入属性
@Value注解不能解析带通配符的路径字符串
解决第一个问题可以配置一个PropertyPlaceholderConfigurer的bean。
第二个问题的具体实例是:
 
- Java 定时任务总结一
tuoni
javaspringtimerquartztimertask
Java定时任务总结 一.从技术上分类大概分为以下三种方式: 1.Java自带的java.util.Timer类,这个类允许你调度一个java.util.TimerTask任务; 说明: java.util.Timer定时器,实际上是个线程,定时执行TimerTask类 &
- 一种防止用户生成内容站点出现商业广告以及非法有害等垃圾信息的方法
yangshangchuan
rank相似度计算文本相似度词袋模型余弦相似度
本文描述了一种在ITEYE博客频道上面出现的新型的商业广告形式及其应对方法,对于其他的用户生成内容站点类型也具有同样的适用性。
最近在ITEYE博客频道上面出现了一种新型的商业广告形式,方法如下:
1、注册多个账号(一般10个以上)。
2、从多个账号中选择一个账号,发表1-2篇博文