感知机官方文档from sklearn.linear_model import perceptron

# Author: Mathieu Blondel
# License: BSD 3 clause

from .stochastic_gradient import BaseSGDClassifier
class Perceptron(BaseSGDClassifier):

    def __init__(self, penalty=None, alpha=0.0001, fit_intercept=True,
                 max_iter=None, tol=None, shuffle=True, verbose=0, eta0=1.0,
                 n_jobs=None, random_state=0, early_stopping=False,
                 validation_fraction=0.1, n_iter_no_change=5,
                 class_weight=None, warm_start=False, n_iter=None):
        super(Perceptron, self).__init__(
            loss="perceptron", penalty=penalty, alpha=alpha, l1_ratio=0,
            fit_intercept=fit_intercept, max_iter=max_iter, tol=tol,
            shuffle=shuffle, verbose=verbose, random_state=random_state,
            learning_rate="constant", eta0=eta0, early_stopping=early_stopping,
            validation_fraction=validation_fraction,
            n_iter_no_change=n_iter_no_change, power_t=0.5,
            warm_start=warm_start, class_weight=class_weight, n_jobs=n_jobs,
            n_iter=n_iter)

参数列表概览

感知机官方文档from sklearn.linear_model import perceptron_第1张图片

1. penalty
penalty : None, 'l2' or 'l1' or 'elasticnet'
        The penalty (aka regularization term) to be used. Defaults to None.
2. alpha
alpha : float
        Constant that multiplies the regularization term if regularization is
        used. Defaults to 0.0001
3. fit_intercept
fit_intercept : bool
        Whether the intercept should be estimated or not. If False, the
        data is assumed to be already centered. Defaults to True.
4. max_iter
max_iter : int, optional
        The maximum number of passes over the training data (aka epochs).
        It only impacts the behavior in the ``fit`` method, and not the
        `partial_fit`.
        Defaults to 5. Defaults to 1000 from 0.21, or if tol is not None.

        .. versionadded:: 0.19
5. tol
 tol : float or None, optional
        The stopping criterion. If it is not None, the iterations will stop
        when (loss > previous_loss - tol). Defaults to None.
        Defaults to 1e-3 from 0.21.

        .. versionadded:: 0.19
6. shuffle
shuffle : bool, optional, default True
        Whether or not the training data should be shuffled after each epoch.
7. verbose
erbose : integer, optional
        The verbosity level
8. eta0
 eta0 : double
        Constant by which the updates are multiplied. Defaults to 1.
9. n_jobs
n_jobs : int or None, optional (default=None)
        The number of CPUs to use to do the OVA (One Versus All, for
        multi-class problems) computation.
        ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
        ``-1`` means using all processors. See :term:`Glossary `
        for more details.
10.random_state
random_state : int, RandomState instance or None, optional, default None
        The seed of the pseudo random number generator to use when shuffling
        the data.  If int, random_state is the seed used by the random number
        generator; If RandomState instance, random_state is the random number
        generator; If None, the random number generator is the RandomState
        instance used by `np.random`.
11. early_stopping
early_stopping : bool, default=False
        Whether to use early stopping to terminate training when validation.
        score is not improving. If set to True, it will automatically set aside
        a fraction of training data as validation and terminate training when
        validation score is not improving by at least tol for
        n_iter_no_change consecutive epochs.

        .. versionadded:: 0.20
12. validation_fraction
validation_fraction : float, default=0.1
        The proportion of training data to set aside as validation set for
        early stopping. Must be between 0 and 1.
        Only used if early_stopping is True.

        .. versionadded:: 0.20
13. n_iter_change
n_iter_no_change : int, default=5
        Number of iterations with no improvement to wait before early stopping.

        .. versionadded:: 0.20
14. class_weighe
class_weight : dict, {class_label: weight} or "balanced" or None, optional
        Preset for the class_weight fit parameter.

        Weights associated with classes. If not given, all classes
        are supposed to have weight one.

        The "balanced" mode uses the values of y to automatically adjust
        weights inversely proportional to class frequencies in the input data
        as ``n_samples / (n_classes * np.bincount(y))``
15. warm_stat
warm_start : bool, optional
        When set to True, reuse the solution of the previous call to fit as
        initialization, otherwise, just erase the previous solution. See
        :term:`the Glossary `.
16. n_iter
n_iter : int, optional
        The number of passes over the training data (aka epochs).
        Defaults to None. Deprecated, will be removed in 0.21.

        .. versionchanged:: 0.19
            Deprecated

你可能感兴趣的:(机器学习)