- CBNetV2: A Composite Backbone Network Architecture for Object Detection论文阅读
Laughing-q
论文阅读深度学习人工智能目标检测实例分割transformer
CBNetV2:ACompositeBackboneNetworkArchitectureforObjectDetection论文阅读介绍方法CBNetV2融合方式对Assistant的监督实验与SOTA的比较在主流backbone架构上的通用性与更宽更深的网络比较与可变形卷积的兼容在主流检测器上的模型适用性在SwinTransformer上的模型适用性消融实验paper:https://arxi
- 常见经典目标检测算法
109702008
人工智能#深度学习目标检测人工智能
ChatGPT目标检测(ObjectDetection)是计算机视觉领域的一个重要分支,其目的是识别数字图像中的不同对象,并给出它们的位置和类别。近年来,许多经典的目标检测算法被提出并广泛应用。以下是一些常见的经典目标检测算法:1.R-CNN(RegionswithCNNfeatures):R-CNN通过使用区域提议方法(如选择性搜索)首先生成潜在的边界框,然后使用卷积神经网络(CNN)提取特征,
- 论文学习11:Boundary-Guided Camouflaged Object Detection
zl29
学习目标检测人工智能
代码来源GitHub-thograce/BGNet:Boundary-GuidedCamouflagedObjectDetection模块作用BGNet利用额外的目标相关边缘语义信息来引导COD任务的特征学习,从而强制模型生成能够突出目标结构的特征。这一机制有助于提高目标边界的精准定位,从而提升伪装目标的检测性能。模块结构BGNet的架构基于Res2Net-50,编码器提取多级特征,解码器通过EA
- pytesseract
Claroja
图像识别tesseract
方法get_tesseract_version,返回tesseract的版本.image_to_string,返回识别的字符串image_to_boxes,返回字符和位置image_to_data,返回边框,置信度和其他的信息,可以参考TesseractTSVimage_to_osd,返回orientationandscriptdetection参数imageObject,PILImage/Num
- 医图论文 CVPR‘24 | 适应医学图像中泛化异常检测的视觉-语言模型
小白学视觉
医学图像处理论文解读语言模型人工智能计算机视觉医学图像顶会医学图像处理CVPR论文解读
论文信息题目:AdaptingVisual-LanguageModelsforGeneralizableAnomalyDetectioninMedicalImages适应医学图像中泛化异常检测的视觉-语言模型作者:ChaoqinHuang,AofanJiang,JinghaoFeng,YaZhang,XinchaoWang,YanfengWang源码:https://github.com/Medi
- 3D-AFFORDANCELLM: HARNESSING LARGE LANGUAGE MODELS FOR OPEN-VOCABULARY AFFORDANCE DETECTION
UnknownBody
LLMDaily3d语言模型人工智能
摘要3D可及性检测是一个具有挑战性的问题,在各种机器人任务中有着广泛的应用。现有方法通常将检测范式制定为基于标签的语义分割任务。这种范式依赖于预定义的标签,缺乏理解复杂自然语言的能力,导致在开放世界场景中的泛化能力有限。为了解决这些限制,我们将传统的可及性检测范式重新定义为指令推理可及性分割(IRAS)任务。该任务旨在根据查询推理文本输出可及性掩码区域,避免了输入标签的固定类别。相应地,我们提出了
- 配置OSPF与BFD联动
IT_社恐刘某
服务器运维
目录BFD简介配置BFD目的BFD优点受益OSPF简介定义OSPF优点实验组网需求配置思路配置步骤1.配置各接口所属的VLAN2.配置各VLANIF接口的IP地址3.配置OSPF基本功能4.配置OSPF与BFD联动5.检查配置结果BFD简介双向转发检测BFD(BidirectionalForwardingDetection)是一种全网统一的检测机制,用于快速检测、监控网络中链路或者IP路由的转发连
- CSMA/CD协议原理与例题
苏雨流丰
考研复习#计算机网络计算机网络
CSMA/CD协议CSMA/CD(CarrierSenseMultipleAccess/collisiondetection,带有冲突检测的载波侦听多路存取)是IEEE802.3使用的一种媒体访问控制方法。从逻辑上可以划分为两大部分:数据链路层的媒体访问控制子层(MAC)和物理层。它严格对应于ISO开放系统互连模式的最低两层。LLC子层和MAC子层在一起完成OSI模式的数据链路层的功能。CSMA/
- YOLO V4(2020 CV)
刘若里
论文阅读YOLO人工智能计算机视觉学习笔记网络
论文标题YOLOv4:OptimalSpeedandAccuracyofObjectDetection论文作者AlexeyBochkovskiy,Chien-YaoWang,Hong-YuanMarkLiao发表日期2020年04月01日GB引用>AlexeyBochkovskiy,Chien-YaoWang,Hong-YuanMarkLiao.YOLOv4:OptimalSpeedandAccu
- 针对AF调试过程中PD多窗机制是如何打分的
爱写BUG的长歌
人工智能计算机视觉算法
在AF(自动对焦)调试中,PD多窗机制(PhaseDetectionMulti-Window)是提升相位对焦精度和鲁棒性的关键技术,其核心是通过在画面中划分多个相位检测窗口,分别计算各窗口的相位差(PhaseDifference)并进行综合评分,最终选择最优对焦位置。以下是其打分机制的核心逻辑和调试要点:1.多窗口布局与权重分配窗口划分根据Sensor的PDAF像素分布,将画面划分为多个区域(例如
- 【氮化镓】GaN HEMTs结温和热阻测试方法
北行黄金橘
氮化镓器件可靠性学习科学研究科技多尺度模拟
文章《TemperaturerisedetectioninGaNhigh-electron-mobilitytransistorsviagate-drainSchottkyjunctionforward-conductionvoltages》,由XiujuanHuang,ChunshengGuo,QianWen,ShiweiFeng,和YaminZhang撰写,发表在《Microelectroni
- 深度学习项目十一:mmdetection训练自己的数据集
小啊磊_Vv
深度学习和视觉项目实战目标跟踪人工智能计算机视觉python深度学习
mmdetection训练自己的数据集这里写目录标题mmdetection训练自己的数据集一:环境搭建二:数据集格式转换(yolo转coco格式)yolo数据集格式coco数据集格式yolo转coco数据集格式yolo转coco数据集格式的代码三:训练dataset数据文件配置configs1.在configs/faster_rcnn/faster-rcnn_r101_fpn_1x_coco.py
- MMDetection实用工具详解(上):日志分析、结果分析、混淆矩阵
MickeyCV
目标检测python深度学习linux目标检测
实用工具目录一、日志分析使用方法实际案例二、结果分析pkl结果文件生成使用方法实际案例三、混淆矩阵使用方法实际案例遇到的UserWarning解决方案MMDetection官方除了训练和测试脚本,他们还在mmdetection/tools/目录下提供了许多有用的工具。本帖先为大家重点介绍其中三个简单而实用的工具:日志分析、结果分析、混淆矩阵。一、日志分析tools/analysis_tools/a
- 了解目标检测:两阶段检测(Two-Stage Detection)、单阶段检测(Single-Stage Detection)和区域建议网络(RPN)
fydw_715
深度学习基础目标检测网络目标跟踪
了解目标检测:两阶段检测(Two-StageDetection)、单阶段检测(Single-StageDetection)和区域建议网络(RPN)在目标检测领域,模型架构在很大程度上决定了模型的性能、速度和应用场景。本文将详细探讨两类主要的目标检测方法——两阶段检测(Two-StageDetection)和单阶段检测(Single-StageDetection),以及它们的核心组件之一:区域建议网
- 网络安全主动防御技术与应用
坚持可信
信息安全web安全php安全
入侵阻断技术(IntrusionPreventionTechnologies)是指通过检测并阻止网络和系统中的恶意活动,防止攻击者利用系统漏洞或其他手段进行破坏或未经授权访问的技术和方法。这些技术通常结合入侵检测(IntrusionDetection)功能,通过实时监控和响应机制,有效防御各种类型的网络攻击。以下是入侵阻断技术的详细介绍及其应用。一、入侵阻断技术入侵检测和防御系统(IDS/IPS)
- MoE-FFD:Mixture of Experts for Generalized and Parameter-Efficient Face Forgery Detection
Sherry Wangs
DeepfakeDetection人工智能pytorch
来源:2024arXiv(submittedTDSC,CCF-A)作者:ChenqiKong1,AnweiLuo2,PeijunBao1,YiYu1,HaoliangLi3,ZengweiZheng4,ShiqiWang3andAlexC.Kot1单位:1新加坡南洋理工大学;2中山大学;3香港城市大学;4浙江大学;Paper:https://arxiv.org/pdf/2404.08452Code
- 【MATLAB源码-第128期】基于matlab的雷达系统回波信号仿真,输出脉压,MTI,MTD等图像。
Matlab_猿助手
调制解调通信原理MATLABmatlab开发语言信息与通信
操作环境:MATLAB2022a1、算法描述雷达(RadioDetectionandRanging)是一种使用无线电波来探测和定位物体的系统。它的基本原理是发射无线电波,然后接收这些波从目标物体上反射回来的信号。通过分析这些反射波,雷达能够确定物体的位置、速度、方向和其他特性。历史背景雷达技术起源于20世纪初。最初的发展动机主要是军事上的需求,特别是在第二次世界大战期间,雷达在侦测敌机和舰船上发挥
- 【Gaussian Model】高斯分布模型
HP-Succinum
机器学习机器学习算法人工智能
目录高斯分布模型用于异常检测(GaussianModelforAnomalyDetection)1.高斯分布简介2.高斯分布模型用于异常检测(1)训练阶段:估计数据分布(2)检测阶段:计算概率判断异常点3.示例代码4.高斯分布异常检测的优缺点优点缺点5.适用场景6.结论高斯分布模型用于异常检测(GaussianModelforAnomalyDetection)在数据分析和机器学习任务中,异常检测(
- VoVNet(2019 CVPR)
刘若里
论文阅读人工智能计算机视觉学习笔记网络
论文标题AnEnergyandGPU-ComputationEfficientBackboneNetworkforReal-TimeObjectDetection论文作者YoungwanLee,Joong-wonHwang,SangrokLee,YuseokBae,JongyoulPark发表日期2019年04月22日GB引用>LeeYoungwan,HwangJoong-won,LeeSangr
- 征程 6 工具链 BEVPoolV2 算子使用教程 1 - BEVPoolV2 算子详解
算法自动驾驶
1.引言当前,地平线征程6工具链已经全面支持了BEVPoolingV2算子,并与mmdetection3d的实现完成了精准对齐。然而,需要注意的是,此算子因其内在的复杂性以及相关使用示例的稀缺,致使部分用户在实际运用过程中遭遇了与预期不符的诸多问题。在这样的背景下,本文首先会对BEVPoolingV2的实现进行全方位、细致入微的剖析讲解,,让复杂的原理变得清晰易懂。随后,还会通过代表性的示例,来进
- AI视觉觉醒:深度学习如何革新视频标注,释放数据潜力基于深度学习的视频自动标注系统
海棠AI实验室
AI理论探索与学术前沿人工智能深度学习音视频
目录引言:被忽视的视频数据金矿传统视频标注的困境:效率、成本与瓶颈深度学习:视频自动标注的破局之道深度学习视频自动标注系统架构系统架构图核心技术解析目标检测(ObjectDetection)行为识别(ActionRecognition)视频分割(VideoSegmentation)代码实践:基于YOLOv5的目标检测视频标注示例挑战与未来展望结语:AI赋能,释放视频数据的无限可能引言:被忽视的视频
- [论文阅读]DAMO-YOLO——实时目标检测设计报告
一朵小红花HH
知识蒸馏目标检测YOLO目标检测目标跟踪论文阅读人工智能
DAMO-YOLODAMO-YOLO:AReportonReal-TimeObjectDetectionDesign实时目标检测设计报告论文网址:DAMO-YOLO简读论文这篇论文介绍了一个名为DAMO-YOLO的新型目标检测方法,相比YOLO系列的其他方法有着更好的性能。该方法的优势来自于几项新技术:使用了MAE-NAS作为骨干网络,可以自动搜索出不同延迟预算下的优化网络结构。MAE-NAS被称
- YOLOv11-ultralytics-8.3.67部分代码阅读笔记-tasks.py
红色的山茶花
YOLO笔记深度学习
tasks.pyultralytics\nn\tasks.py目录tasks.py1.所需的库和模块2.classBaseModel(nn.Module):3.classDetectionModel(BaseModel):4.classOBBModel(DetectionModel):5.classSegmentationModel(DetectionModel):6.classPoseModel
- 记一次pytorch训练loss异常的问题
lyyiangang
pytorch人工智能python
记一次pytorch训练loss异常的问题问题描述使用mmdetection框架训练时,某项loss出现异常大的值,比如1781232349724294.000。这个问题只在多卡训练时才会出现。解决方法在确认target和predction没有问题后,发现是在dataset中的数据处理出现了问题。在dataset中的__getitem__函数中,对数据进行了处理,但是在处理时,将数据转换为了num
- Elasticsearch——动态映射
java编程小帅
Elasticsearchelasticsearch大数据esjava搜索引擎
目录Dynamicfieldmappingsdatedetection(日期检测)Disablingdatedetection(禁用日期检测)Customizingdetecteddateformats(自定义检测到的日期格式)Numericdetection(数字检测)Dynamictemplates验证动态模板在动态模板映射运行时字段Elasticsearch最重要的功能之一就是它会尽量避开我
- 串口收发大数据和接收发送不定长数据
✧˖‹gσσ∂ иιghт›✧
单片机嵌入式硬件
一.首先是大家想知道的接收发送不定长数据这里我仅仅推荐一种方法,虽然有很多方法STM32HALCubeMX串口IDLE接收空闲中断+DMA_idlelinedetectioninterrupt-CSDN博客但是我还是仅仅推荐我这种:利用HAL库的HAL_UARTEx_ReceiveToIdle_DMA()函数,代码简洁。在HAL里面能用回调函数直接实现功能的就别去自己写逻辑代码配置就是打开串口中断
- esp-who配置与编译流程分析 - esp32-s3-eye
生活需要深度
esp32-eye配置编译
book@100ask:~/esp/esp-who/examples/motion_detection/lcd$idf.pyset-targetesp32s3Adding"set-target"'sdependency"fullclean"tolistofcommandswithdefaultsetofoptions.Executingaction:fullcleanBuilddirectory'
- End-to-End Object Detection with Transformers
M1kk0
目标检测计算机视觉神经网络
End-to-EndObjectDetectionwithTransformers会议:2020ECCV论文:https://arxiv.org/abs/2005.12872代码:https://github.com/facebookresearch/detr创新点:\作者摒弃了基于anchor、NMS等这种需要手工设计的模块,和R-CNN系列、YOLO系列,以及其他anchor-free的方法都
- 浅谈XDR---扩展检测与响应(Extended Detection and Response)
金州饿霸
BigData网络
一、目前热门的XDR安全公司1.BitdefenderBitdefenderGravityZoneUltra将保护与扩展端点检测和响应(XEDR)相结合,帮助组织在威胁生命周期中保护端点基础设施,如工作站、服务器和容器。跨端点事件关联将EDR的粒度和丰富的安全上下文与XDR的基础设施分析结合在一起通过对端点和用户产生的风险进行风险分析并在本地强化创新,Bitdefender最大限度地减少了端点攻击
- 25/2/18 <算法笔记> ByteTrack
青椒大仙KI11
笔记
ByteTrack(发表在2021年)是一种高效且精确的**多目标跟踪(Multi-ObjectTracking,MOT)**算法。它属于目标跟踪领域中基于检测的类别(trackingbydetection),核心思想是利用目标检测器的高置信度和低置信度检测结果,通过简单的后处理策略实现高效和准确的目标跟踪。多目标跟踪(MOT)的主要目的是对视频或帧序列中的多个对象进行检测和跟踪。在MOT方法中通
- 辗转相处求最大公约数
沐刃青蛟
C++漏洞
无言面对”江东父老“了,接触编程一年了,今天发现还不会辗转相除法求最大公约数。惭愧惭愧!
为此,总结一下以方便日后忘了好查找。
1.输入要比较的两个数a,b
忽略:2.比较大小(因为后面要的是大的数对小的数做%操作)
3.辗转相除(用循环不停的取余,如a%b,直至b=0)
4.最后的a为两数的最大公约数
&
- F5负载均衡会话保持技术及原理技术白皮书
bijian1013
F5负载均衡
一.什么是会话保持? 在大多数电子商务的应用系统或者需要进行用户身份认证的在线系统中,一个客户与服务器经常经过好几次的交互过程才能完成一笔交易或者是一个请求的完成。由于这几次交互过程是密切相关的,服务器在进行这些交互过程的某一个交互步骤时,往往需要了解上一次交互过程的处理结果,或者上几步的交互过程结果,服务器进行下
- Object.equals方法:重载还是覆盖
Cwind
javagenericsoverrideoverload
本文译自StackOverflow上对此问题的讨论。
原问题链接
在阅读Joshua Bloch的《Effective Java(第二版)》第8条“覆盖equals时请遵守通用约定”时对如下论述有疑问:
“不要将equals声明中的Object对象替换为其他的类型。程序员编写出下面这样的equals方法并不鲜见,这会使程序员花上数个小时都搞不清它为什么不能正常工作:”
pu
- 初始线程
15700786134
暑假学习的第一课是讲线程,任务是是界面上的一条线运动起来。
既然是在界面上,那必定得先有一个界面,所以第一步就是,自己的类继承JAVA中的JFrame,在新建的类中写一个界面,代码如下:
public class ShapeFr
- Linux的tcpdump
被触发
tcpdump
用简单的话来定义tcpdump,就是:dump the traffic on a network,根据使用者的定义对网络上的数据包进行截获的包分析工具。 tcpdump可以将网络中传送的数据包的“头”完全截获下来提供分析。它支 持针对网络层、协议、主机、网络或端口的过滤,并提供and、or、not等逻辑语句来帮助你去掉无用的信息。
实用命令实例
默认启动
tcpdump
普通情况下,直
- 安卓程序listview优化后还是卡顿
肆无忌惮_
ListView
最近用eclipse开发一个安卓app,listview使用baseadapter,里面有一个ImageView和两个TextView。使用了Holder内部类进行优化了还是很卡顿。后来发现是图片资源的问题。把一张分辨率高的图片放在了drawable-mdpi文件夹下,当我在每个item中显示,他都要进行缩放,导致很卡顿。解决办法是把这个高分辨率图片放到drawable-xxhdpi下。
&nb
- 扩展easyUI tab控件,添加加载遮罩效果
知了ing
jquery
(function () {
$.extend($.fn.tabs.methods, {
//显示遮罩
loading: function (jq, msg) {
return jq.each(function () {
var panel = $(this).tabs(&
- gradle上传jar到nexus
矮蛋蛋
gradle
原文地址:
https://docs.gradle.org/current/userguide/maven_plugin.html
configurations {
deployerJars
}
dependencies {
deployerJars "org.apache.maven.wagon
- 千万条数据外网导入数据库的解决方案。
alleni123
sqlmysql
从某网上爬了数千万的数据,存在文本中。
然后要导入mysql数据库。
悲剧的是数据库和我存数据的服务器不在一个内网里面。。
ping了一下, 19ms的延迟。
于是下面的代码是没用的。
ps = con.prepareStatement(sql);
ps.setString(1, info.getYear())............;
ps.exec
- JAVA IO InputStreamReader和OutputStreamReader
百合不是茶
JAVA.io操作 字符流
这是第三篇关于java.io的文章了,从开始对io的不了解-->熟悉--->模糊,是这几天来对文件操作中最大的感受,本来自己认为的熟悉了的,刚刚在回想起前面学的好像又不是很清晰了,模糊对我现在或许是最好的鼓励 我会更加的去学 加油!:
JAVA的API提供了另外一种数据保存途径,使用字符流来保存的,字符流只能保存字符形式的流
字节流和字符的难点:a,怎么将读到的数据
- MO、MT解读
bijian1013
GSM
MO= Mobile originate,上行,即用户上发给SP的信息。MT= Mobile Terminate,下行,即SP端下发给用户的信息;
上行:mo提交短信到短信中心下行:mt短信中心向特定的用户转发短信,你的短信是这样的,你所提交的短信,投递的地址是短信中心。短信中心收到你的短信后,存储转发,转发的时候就会根据你填写的接收方号码寻找路由,下发。在彩信领域是一样的道理。下行业务:由SP
- 五个JavaScript基础问题
bijian1013
JavaScriptcallapplythisHoisting
下面是五个关于前端相关的基础问题,但却很能体现JavaScript的基本功底。
问题1:Scope作用范围
考虑下面的代码:
(function() {
var a = b = 5;
})();
console.log(b);
什么会被打印在控制台上?
回答:
上面的代码会打印 5。
&nbs
- 【Thrift二】Thrift Hello World
bit1129
Hello world
本篇,不考虑细节问题和为什么,先照葫芦画瓢写一个Thrift版本的Hello World,了解Thrift RPC服务开发的基本流程
1. 在Intellij中创建一个Maven模块,加入对Thrift的依赖,同时还要加上slf4j依赖,如果不加slf4j依赖,在后面启动Thrift Server时会报错
<dependency>
- 【Avro一】Avro入门
bit1129
入门
本文的目的主要是总结下基于Avro Schema代码生成,然后进行序列化和反序列化开发的基本流程。需要指出的是,Avro并不要求一定得根据Schema文件生成代码,这对于动态类型语言很有用。
1. 添加Maven依赖
<?xml version="1.0" encoding="UTF-8"?>
<proj
- 安装nginx+ngx_lua支持WAF防护功能
ronin47
需要的软件:LuaJIT-2.0.0.tar.gz nginx-1.4.4.tar.gz &nb
- java-5.查找最小的K个元素-使用最大堆
bylijinnan
java
import java.util.Arrays;
import java.util.Random;
public class MinKElement {
/**
* 5.最小的K个元素
* I would like to use MaxHeap.
* using QuickSort is also OK
*/
public static void
- TCP的TIME-WAIT
bylijinnan
socket
原文连接:
http://vincent.bernat.im/en/blog/2014-tcp-time-wait-state-linux.html
以下为对原文的阅读笔记
说明:
主动关闭的一方称为local end,被动关闭的一方称为remote end
本地IP、本地端口、远端IP、远端端口这一“四元组”称为quadruplet,也称为socket
1、TIME_WA
- jquery ajax 序列化表单
coder_xpf
Jquery ajax 序列化
checkbox 如果不设定值,默认选中值为on;设定值之后,选中则为设定的值
<input type="checkbox" name="favor" id="favor" checked="checked"/>
$("#favor&quo
- Apache集群乱码和最高并发控制
cuisuqiang
apachetomcat并发集群乱码
都知道如果使用Http访问,那么在Connector中增加URIEncoding即可,其实使用AJP时也一样,增加useBodyEncodingForURI和URIEncoding即可。
最大连接数也是一样的,增加maxThreads属性即可,如下,配置如下:
<Connector maxThreads="300" port="8019" prot
- websocket
dalan_123
websocket
一、低延迟的客户端-服务器 和 服务器-客户端的连接
很多时候所谓的http的请求、响应的模式,都是客户端加载一个网页,直到用户在进行下一次点击的时候,什么都不会发生。并且所有的http的通信都是客户端控制的,这时候就需要用户的互动或定期轮训的,以便从服务器端加载新的数据。
通常采用的技术比如推送和comet(使用http长连接、无需安装浏览器安装插件的两种方式:基于ajax的长
- 菜鸟分析网络执法官
dcj3sjt126com
网络
最近在论坛上看到很多贴子在讨论网络执法官的问题。菜鸟我正好知道这回事情.人道"人之患好为人师" 手里忍不住,就写点东西吧. 我也很忙.又没有MM,又没有MONEY....晕倒有点跑题.
OK,闲话少说,切如正题. 要了解网络执法官的原理. 就要先了解局域网的通信的原理.
前面我们看到了.在以太网上传输的都是具有以太网头的数据包. 
- Android相对布局属性全集
dcj3sjt126com
android
RelativeLayout布局android:layout_marginTop="25dip" //顶部距离android:gravity="left" //空间布局位置android:layout_marginLeft="15dip //距离左边距
// 相对于给定ID控件android:layout_above 将该控件的底部置于给定ID的
- Tomcat内存设置详解
eksliang
jvmtomcattomcat内存设置
Java内存溢出详解
一、常见的Java内存溢出有以下三种:
1. java.lang.OutOfMemoryError: Java heap space ----JVM Heap(堆)溢出JVM在启动的时候会自动设置JVM Heap的值,其初始空间(即-Xms)是物理内存的1/64,最大空间(-Xmx)不可超过物理内存。
可以利用JVM提
- Java6 JVM参数选项
greatwqs
javaHotSpotjvmjvm参数JVM Options
Java 6 JVM参数选项大全(中文版)
作者:Ken Wu
Email:
[email protected]
转载本文档请注明原文链接 http://kenwublog.com/docs/java6-jvm-options-chinese-edition.htm!
本文是基于最新的SUN官方文档Java SE 6 Hotspot VM Opt
- weblogic创建JMC
i5land
weblogicjms
进入 weblogic控制太
1.创建持久化存储
--Services--Persistant Stores--new--Create FileStores--name随便起--target默认--Directory写入在本机建立的文件夹的路径--ok
2.创建JMS服务器
--Services--Messaging--JMS Servers--new--name随便起--Pers
- 基于 DHT 网络的磁力链接和BT种子的搜索引擎架构
justjavac
DHT
上周开发了一个磁力链接和 BT 种子的搜索引擎 {Magnet & Torrent},本文简单介绍一下主要的系统功能和用到的技术。
系统包括几个独立的部分:
使用 Python 的 Scrapy 框架开发的网络爬虫,用来爬取磁力链接和种子;
使用 PHP CI 框架开发的简易网站;
搜索引擎目前直接使用的 MySQL,将来可以考虑使
- sql添加、删除表中的列
macroli
sql
添加没有默认值:alter table Test add BazaarType char(1)
有默认值的添加列:alter table Test add BazaarType char(1) default(0)
删除没有默认值的列:alter table Test drop COLUMN BazaarType
删除有默认值的列:先删除约束(默认值)alter table Test DRO
- PHP中二维数组的排序方法
abc123456789cba
排序二维数组PHP
<?php/*** @package BugFree* @version $Id: FunctionsMain.inc.php,v 1.32 2005/09/24 11:38:37 wwccss Exp $*** Sort an two-dimension array by some level
- hive优化之------控制hive任务中的map数和reduce数
superlxw1234
hivehive优化
一、 控制hive任务中的map数: 1. 通常情况下,作业会通过input的目录产生一个或者多个map任务。 主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(目前为128M, 可在hive中通过set dfs.block.size;命令查看到,该参数不能自定义修改);2. 
- Spring Boot 1.2.4 发布
wiselyman
spring boot
Spring Boot 1.2.4已于6.4日发布,repo.spring.io and Maven Central可以下载(推荐使用maven或者gradle构建下载)。
这是一个维护版本,包含了一些修复small number of fixes,建议所有的用户升级。
Spring Boot 1.3的第一个里程碑版本将在几天后发布,包含许多