训练集、验证集和测试集这三个名词的区别


训练集验证集测试集这三个名词在机器学习领域极其常见,但很多人并不是特别清楚,尤其是后两个经常被人混用。

在有监督(supervise)的机器学习中,数据集常被分成2~3个,即:训练集(train set),验证集(validation set),测试集(test set)。

训练集、验证集和测试集这三个名词的区别_第1张图片

 

Ripley, B.D(1996)在他的经典专著Pattern Recognition and Neural Networks中给出了这三个词的定义。 

  • Training set: A set of examples used for learning, which is to fit the parameters [i.e., weights] of the classifier.
  • Validation set: A set of examples used to tune the parameters [i.e., architecture, not weights] of a classifier, for example to choose the number of hidden units in a neural network.
  • Test set: A set of examples used only to assess the performance [generalization] of a fully specified classifier.

训练集

作用:估计模型

学习样本数据集,通过匹配一些参数来建立一个分类器。建立一种分类的方式,主要是用来训练模型的。

验证集

作用:确定网络结构或者控制模型复杂程度的参数

对学习出来的模型,调整分类器的参数,如在神经网络中选择隐藏单元数。验证集还用来确定网络结构或者控制模型复杂程度的参数。

测试集

作用:检验最终选择最优的模型的性能如何

主要是测试训练好的模型的分辨能力(识别率等)

为何需要划分

Ripley也谈到了这个问题:Why separate test and validation sets? 

  • 1. The error rate estimate of the final model on validation data will be biased (smaller than the true error rate) since the validation set is used to select the final model. 
  • 2. After assessing the final model with the test set, YOU MUST NOT tune the model any further.

简而言之,为了防止过度拟合。如果我们把所有数据都用来训练模型的话,建立的模型自然是最契合这些数据的,测试表现也好。但换了其它数据集测试这个模型效果可能就没那么好了。就好像你给班上同学做校服,大家穿着都合适你就觉得按这样做就对了,那给别的班同学穿呢?不合适的概率会高吧。总而言之训练集和测试集相同的话,模型评估结果可能比实际要好。 

总结

显然,training set是用来训练模型或确定模型参数的,如ANN中权值等; validation set是用来做模型选择(model selection),即做模型的最终优化及确定的,如ANN的结构;而 test set则纯粹是为了测试已经训练好的模型的推广能力。当然,test set这并不能保证模型的正确性,他只是说相似的数据用此模型会得出相似的结果。但实际应用中,一般只将数据集分成两类,即training set 和test set,大多数文章并不涉及validation set。

一个典型的划分是训练集占总样本的50%,而其它各占25%,三部分都是从样本中随机抽取。

训练集、验证集和测试集这三个名词的区别_第2张图片

 

样本少的时候,上面的划分就不合适了。常用的是留少部分做测试集。然后对其余N个样本采用K折交叉验证法。就是将样本打乱,然后均匀分成K份,轮流选择其中K-1份训练,剩余的一份做验证,计算预测误差平方和,最后把K次的预测误差平方和再做平均作为选择最优模型结构的依据。特别的K取N,就是留一法(leave one out)。

附上一段伪代码:

for each epoch
    for each training data instance
        propagate error through the network
        adjust the weights
        calculate the accuracy over training data
    for each validation data instance
        calculate the accuracy over the validation data
    if the threshold validation accuracy is met
        exit training
    else
        continue training

 

(内容from 北岛知寒 - 开源爱好者  https://www.cnblogs.com/crazyacking/p/6737955.html#_label00)


你可能感兴趣的:(机器学习)