K 近邻法(k-nearest neighbor,k-NN)MATLAB实现

一、简单介绍

K 近邻法(k-nearest neighbor,k-NN)MATLAB实现_第1张图片

二、实验准备

实验数据:IRIS也称鸢尾花卉数据集,是一类多重变量分析的数据集。数据集包含150个数据集,分为3类(本次实验中,分别记为1,2,3类),每类50个数据,每个数据包含4个属性。

实验语言:MATLAB

目录结构:
K 近邻法(k-nearest neighbor,k-NN)MATLAB实现_第2张图片

三、具体代码实现

1) knn 实现

function y = knn(trainData, sample_label, testData, k)
 
%KNN k-Nearest Neighbors Algorithm.
%
%   INPUT:  trainData:       training sample Data, M-by-N matrix.
%           sample_label:    training sample labels, 1-by-N row vector.
%           testData:        testing sample Data, M-by-N_test matrix.
%           K:               the k in k-Nearest Neighbors
%
%   OUTPUT: y    : predicted labels, 1-by-N_test row vector.
%
% Author: Sophia_Dz
 
[M_train, N] = size(trainData);
[M_test, ~] = size(testData);
 
%calculate the distance between testData and trainData
 
Dis = zeros(M_train,1);
class_test = zeros(M_test,1);
for n = 1:M_test
    for i = 1:M_train
        distance1 = 0;
        for j = 1:N
            distance1 = (testData(n,j) - trainData(i,j)).^2 + distance1;
        end
        Dis(i,1) = distance1.^0.5;
    end
 
    %find the k nearest neighbor
    [~, index] = sort(Dis);
    for i = 1:k
        temp(i) = sample_label(index(i));
    end
    table = tabulate(temp);
    MaxCount=max(table(:,2,:));
    [row,col]=find(table==MaxCount);
    MaxValue=table(row,1);
    class_test(n) = MaxValue;
end
 
y = class_test;

2) 测试demo

clear all,clc
 
M = dlmread('IRIS_original_data.txt');
 
sample_label = M(:,5);
 
trainData = M(:,1:4);
 
testData = dlmread('IRIS_test_data.txt');
 
k = 5;
 
y = knn(trainData, sample_label, testData, k)

四、运行结果

测试数据集(从鸢尾花卉数据集中任选的四个数据):
4.3 3.0 1.1 0.1

6.9 3.1 5.4 2.1

5.6 2.5 3.9 1.1

5.6 2.8 4.9 2.0

测试结果:
K 近邻法(k-nearest neighbor,k-NN)MATLAB实现_第3张图片

你可能感兴趣的:(统计学习方法-学习笔记,代码实践)