本文主要介绍使用RNN来实现回归,对曲线进行预测。
示例代码:
import numpy as np
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense, TimeDistributed, LSTM
from keras.optimizers import Adam
import matplotlib.pyplot as plt
# 使多次生成的随机数相同
np.random.seed(1337)
# 超参数
BATCH_START = 0
TIME_STEPS = 20
BATCH_SIZE = 50
INPUT_SIZE = 1
OUTPUT_SIZE = 1
CELL_SIZE = 20
LR = 0.006
# 生成数据
def get_batch():
global BATCH_START, TIME_STEPS
# xs shape (50batch, 20steps)
xs = np.arange(BATCH_START, BATCH_START+TIME_STEPS*BATCH_SIZE).reshape((BATCH_SIZE, TIME_STEPS)) / (10*np.pi)
seq = np.sin(xs)
res = np.cos(xs)
BATCH_START += TIME_STEPS
# plt.plot(xs[0, :], res[0, :], 'r', xs[0, :], seq[0, :], 'b--')
# plt.show()
return [seq[:, :, np.newaxis], res[:, :, np.newaxis], xs]
# 查看数据
# get_batch()
# exit()
# 搭建网络
model = Sequential()
# 添加LSTM层
model.add(LSTM(
batch_input_shape=(BATCH_SIZE, TIME_STEPS, INPUT_SIZE),
output_dim=CELL_SIZE,
return_sequences=True, # 对于每一个时间点需不需要输出对应的output, True每个时刻都输出, False最后的输出output
stateful=True, # batch与batch之间是否有联系,需不需要将状态进行传递
))
# add output layer
model.add(TimeDistributed(Dense(OUTPUT_SIZE))) # TimeDistributed:对每一个output进行全连接的计算
# 优化器
adam = Adam()
model.compile(
optimizer=adam,
loss='mse',
)
# 训练
print('Training ------------')
for step in range(501):
# data shape = (batch_num, steps, inputs/outputs)
X_batch, Y_batch, xs = get_batch()
cost = model.train_on_batch(X_batch, Y_batch)
pred = model.predict(X_batch, BATCH_SIZE)
plt.plot(xs[0, :], Y_batch[0].flatten(), 'r', xs[0, :], pred.flatten()[:TIME_STEPS], 'b--')
plt.ylim((-1.2, 1.2))
plt.draw()
plt.pause(0.1)
if step % 10 == 0:
print('train cost: ', cost)
数据示例:
def get_batch():
global BATCH_START, TIME_STEPS
# xs shape (50batch, 20steps)
xs = np.arange(BATCH_START, BATCH_START+TIME_STEPS*BATCH_SIZE).reshape((BATCH_SIZE, TIME_STEPS)) / (1*np.pi)
seq = np.sin(xs)
res = np.cos(xs)
BATCH_START += TIME_STEPS
plt.plot(xs[0, :], res[0, :], 'r', xs[0, :], seq[0, :], 'b--')
plt.show()
return [seq[:, :, np.newaxis], res[:, :, np.newaxis], xs]
# 查看数据
get_batch()
exit()
结果:
train cost: 0.50940645
train cost: 0.4966624
train cost: 0.48060146
train cost: 0.45672885
train cost: 0.4108651
train cost: 0.31347314
train cost: 0.12554297
train cost: 0.07388962
train cost: 0.10137392
train cost: 0.046597198
train cost: 0.05946522
train cost: 0.040294208
train cost: 0.053411756
train cost: 0.15622795
train cost: 0.17914045
train cost: 0.16356382
train cost: 0.21077277
train cost: 0.20014948
train cost: 0.18070495
train cost: 0.16142645
train cost: 0.19912449
train cost: 0.16934186
train cost: 0.16477375
train cost: 0.17521137
train cost: 0.20553884
train cost: 0.15104571
train cost: 0.16296455
train cost: 0.16819069
train cost: 0.11465822
train cost: 0.14150377
train cost: 0.13508156
train cost: 0.13755415
train cost: 0.13000277
train cost: 0.11969448
train cost: 0.09293661
train cost: 0.0819223
train cost: 0.06903682
train cost: 0.07125411
train cost: 0.08032415
train cost: 0.07321488
train cost: 0.096763514
train cost: 0.078285255
train cost: 0.07236056
train cost: 0.065320924
train cost: 0.057717755
train cost: 0.063192114
train cost: 0.047402352
train cost: 0.05537389
train cost: 0.051893406
train cost: 0.052938405
train cost: 0.05649735