深度学习数据集汇总

1. CIFAR-10 & CIFAR-100

    CIFAR-10包含10个类别,50,000个训练图像,彩色图像大小:32x32,10,000个测试图像。

    (类别:airplane,automobile, bird, cat, deer, dog, frog, horse, ship, truck)

    (作者:Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton)

    (数据格式:Python版本、Matlab版本、二进制版本

     CIFAR-100与CIFAR-10类似,包含100个类,每类有600张图片,其中500张用于训练,100张用于测试;这100个类分组成20个超类。每个图像有一个"find" label和一个"coarse"label。

2. 图像分类结果及对应的论文

    图像分类结果及应的论文,包含数据集:MNIST、CIFAR-10、CIFAR-100、STL-10、SVHN、ILSVRC2012 task 1     

    ILSVRC: ImageNet Large Scale Visual Recognition Challenge

3. ImageNet

    ImageNet相关信息如下:

    1)Total number of non-empty synsets: 21841
    2)Total number of images: 14,197,122
    3)Number of images with bounding box annotations: 1,034,908
    4)Number of synsets with SIFT features: 1000
    5)Number of images with SIFT features: 1.2 million

4. COCO

    COCO(Common Objects in Context)是一个新的图像识别、分割、和字幕数据集,它有如下特点:

    1)Object segmentation

    2)Recognition in Context
    3)Multiple objects per image
    4)More than 300,000 images
    5)More than 2 Million instances
    6)80 object categories
    7)5 captions per image
    8)Keypoints on 100,000 people

    COCO 2016 Detection Challenge(2016.6.1-2016.9.9)和COCO 2016 Keypoint Challenge(2016.6.1-2016.9.9)已经由Microsoft发起 由ECCV 2016(ECCV:European Conference On Computer Vision )。

4. 3D数据

   1)RGB-D People Dataset

     2)NYU Hand Pose Dataset code

   3)Human3.6M (3D Human Pose Dataset)

         - 《Iterated Second-Order Label Sensitive Pooling for 3D Human Pose Estimation》

5. 人脸Dataset

   1)LFW (Labeled Faces in the Wild) 

6. Stereo Datasets

   2)Middlebury Stereo Datasets

   3)KITTI Vision Benchmark Suite

你可能感兴趣的:(深度学习)