最近AIOps火热的就像8月里的盛夏,运维圈子里的每一个人都在讨论着AIOps,仿佛不聊点AIOps的东西,就透着那么out。原来做运维产品的一众厂商也像打了鸡血似的,纷纷推出花样繁多的AIOps产品,仿佛AIOps是什么传说中的灵丹妙药,一试就灵、包治百病一样。
Gartner更是推波助澜,颇为大胆的预测到2022年,将有超过40%的企业会采用AIOps平台技术。睿象科技从18年初开始投入研发力量做AIOps平台,转眼间一年时间过去了,期间遇到了各种未曾预期的挑战,想起来实在是五味杂陈,溢于言表。
不过总算天道酬勤,到现在为止,我们已经成功实施四个商业案例了。淌过这么多坑,对AIOps算是有了些更深入的体会,过节这几天闲暇无事,就和诸位聊聊,也算给大家提个醒吧。
AIOps平台包罗万象,包含异常检测,异常定位,根因分析,容量规划,故障预测,模式识别,告警压缩等等各种“豪华大招”。貌似感觉有了AIOps平台,运维工程师再也不用苦逼哄哄了,然而理想丰满,现实却骨感,要实现我们的理想,甚至说只是部分实现,都是一个极具挑战的系统工程,个人感觉至少要翻越「三座大山」。
众所周知,要实现好智能运维,全方位,实时,多维度,全量地对运维数据采集采集,是所有工作的第一步,但是这第一步可不好走。
一个典型的AIOps企业级用户,大多数情况都有比较完整的运维体系,而且经年累月,积累并实施了很多成熟的运维工具,从传统网管,基础架构监控,网络监控,流量监控,工单系统,日志监控,到最流行的APM,从国外的大厂IBM BMC的 Tivoli,OpenView,再到国内的OneAPM,摩卡,天旦,还有开源的Zabbix, Catti ,ELK 等,应有尽有。要在很多软件都已经没有,要将相应的数据导入到AIOps平台中,相应的工作量可想而知。
更要命的是,很多软件,特别是老旧一点的运维产品,是没有公开的数据接口的,某些工具,即使通过各种方法把数据取出来,发现其数据也是不准确,或者是非实时的。
我们在碰到这类问题的时候,就会先帮着企业梳理已有的数据采集工具,能接的全部接上,建立相应的数据模型,如果没有相应的数据维度,则建议企业购买相应的数据采集工具来补足能力。
数据中台概念最早是由阿里提出来的,是指以服务为导向,对海量数据进行采集、计算、存储、加工的一系列技术集合;这个概念通常有优先应用于与公司经营决策运行的业务数据,但是随着AIOps的概念的出现,接入海量多种类的IT 数据,所带来的数据存储,计算,加工问题,通常会困扰到运维团队。
在国外,如Gartner的定义中,就没有数据中台的概念,但国外在谈到这块的时候,会用Data lakes 来进行进行陈述,这个IT数据湖对数据处理的要求,有着自己的特点,主要有着以下的挑战:
海量存储和可扩展性的挑战
一般中小金融机构的IT数据中心,在AIOps平台建设的初期,接入的数据量每天就可能达到就在1TB以上,而随着客户对平台价值的理解, 客户将会更多类型的数据,特别是接入例如Wire Data, Tracing Data后,数据量必将会有爆炸性的增长,达到接近50TB每天,甚至突破100TB每天。
数据类型多样挑战
从IT监控运维的角度来说,AIOps 接入的数据包括,时序指标数据,日志数据,网络抓包数据,事务链数据,IT事件数据等等,从底层技术维度来看这些数据,可以把这些数据理解为,时序数据,半结构化数据,DAG图数据,结构化数据,很明显,要对这些这么多样化数据进行存储和分析,只用一种数据存储引擎是不够的,选择合适的数据存储引擎,如何将多个数据引擎进行有机结合,是一个考验。
多样化的分析需求挑战
AIOps监控运维,分析场景众多,维度复杂,在业务监控这块,部分还有很强的关联关系,还要结合一些传统的机器学习算法进行分析,导致了平台起码要支持以下的分析能力:
数据治理挑战
可以想象,我们往这个数据湖里头,灌了那么多不同类型的,不同结构的数据后,如果没有合适的治理,这数据湖将肯定会变成一个泥潭,所以需要以下的治理能力。
可以看到,这个数据中台的能力,是整个AIOps平台的核心,架构,实现的难度非常大, 非常考验架构师的功力。
算法的挑战主要来自以下几个方面,分别是人,期望,适用场景,工程化。
这里的人,不单只是算法研究员,而是完整的从产品,算法,研发,运维,测试的有机合作,形成完整的团队,才能从运维场景出发,为算法找到这个相应的落脚点,并通过产品设计,研发编码,运维及测试的配合,才能很好的进行落地。
客户对相应的场景的合理预期,是算法落地的关键。无论是广义的AI,还是AIOps里头的智能算法,都距离大众的期望值有较大的距离,而现在媒体还处于对于AI算法的炒作期阶段,所以这里就会引发出较大落差。在项目初始阶段,需要进行充分,反复的沟通,让双方都能理解到,在目前的阶段,算法的实践还是属于前沿探索行为,在特定的场景下,有一定的效果,而且在落地的过程中,一定有各种的问题,需要一起去探索。
离开用户适用场景,去谈AIOps算法,就是耍流程。在刚开始,进行算法研究的时候,我们的算法研究员是独立对算法进行研究的,结果发现,通过新研究的算法,从技术上来说,目标是达到了,但是从业务上来说,这个结果,对于运维人员来说,本身就是显而易见的,就是说在这个场景中,用算法算出的的结果,毫无意义。因此,我们在日后的算法探索,第一步就是与运维人员及客户,把相应的运维场景进行明确。
而在项目真正项目实践过程中,我们在于客户互动的情况下,我们发现,其实在很多时候,客户所想要的智能化,并不一定需要用到多复杂的算法,例如, 我们用了多个很常见算法,甚至不是机器学习的算法, 在客户海量的告警数据下, 对进行了压缩,减少了告警风暴,给客户带来了非常实际的价值。
因此,根据场景找到合适的算法,并进行落地,是算法落地的关键一步。
我们发现了,很多的算法及模型,在进行实验的时候很不错,但是要进行生产,将算法迁移到生产环境中,就会发现有不少的问题,最普遍的是,计算量巨大,导致计算没有办法做到实时,又或者由于没有考虑到一些制约因素,没有选用对合适的数据读取方法,导致运行缓慢,甚至程序崩溃。
从客观上来说,很多的算法研究员编码及工程化能力不太强,这基本上是一个普遍现场,毕竟术业有专攻;另外以一方面,这也是工程化和产品化的一部分,需要,算法研究员与架构师一起,将算法的实现进行重构, 并进行产品化,工程化。
路慢慢其修远兮,吾将上下而求索。在追求运维智能化的道路上,注定不会平坦,以上就是我们团队在做AIOps产品时经过的「三座大山」,希望能对大家有所帮助,如果大家想要更多的了解有关AIOps的知识,欢迎访问www.AIOps.com。