Opencv2.4 Python SURF 匹配

opencv_haystack =cv2.imread('woman2.bmp')
opencv_needle =cv2.imread('face.bmp')

ngrey = cv2.cvtColor(opencv_needle, cv2.COLOR_BGR2GRAY)
hgrey = cv2.cvtColor(opencv_haystack, cv2.COLOR_BGR2GRAY)

# build feature detector and descriptor extractor
hessian_threshold = 85
detector = cv2.SURF(hessian_threshold)
(hkeypoints, hdescriptors) = detector.detect(hgrey, None, useProvidedKeypoints = False)
(nkeypoints, ndescriptors) = detector.detect(ngrey, None, useProvidedKeypoints = False)

# extract vectors of size 64 from raw descriptors numpy arrays
rowsize = len(hdescriptors) / len(hkeypoints)
if rowsize > 1:
    hrows = numpy.array(hdescriptors, dtype = numpy.float32).reshape((-1, rowsize))
    nrows = numpy.array(ndescriptors, dtype = numpy.float32).reshape((-1, rowsize))
    #print hrows.shape, nrows.shape
else:
    hrows = numpy.array(hdescriptors, dtype = numpy.float32)
    nrows = numpy.array(ndescriptors, dtype = numpy.float32)
    rowsize = len(hrows[0])

# kNN training - learn mapping from hrow to hkeypoints index
samples = hrows
responses = numpy.arange(len(hkeypoints), dtype = numpy.float32)
#print len(samples), len(responses)
knn = cv2.KNearest()
knn.train(samples,responses)

# retrieve index and value through enumeration
count = 1

for i, descriptor in enumerate(nrows):
    descriptor = numpy.array(descriptor, dtype = numpy.float32).reshape((1, rowsize))
    #print i, descriptor.shape, samples[0].shape
    retval, results, neigh_resp, dists = knn.find_nearest(descriptor, 1)
    res, dist =  int(results[0][0]), dists[0][0]
    #print res, dist

    if dist < 0.1:
        count = count+1
        # draw matched keypoints in red color
        color = (0, 0, 255)
#    else:
#        # draw unmatched in blue color
#        color = (255, 0, 0)
    # draw matched key points on haystack image
        x,y = hkeypoints[res].pt
        center = (int(x),int(y))
        cv2.circle(opencv_haystack,center,2,color,-1)
        # draw matched key points on needle image
        x,y = nkeypoints[i].pt
        center = (int(x),int(y))
        cv2.circle(opencv_needle,center,2,color,-1)

cv.ShowImage("Input Image", opencv_haystack)
cv.waitKey(0)
cv.ShowImage("The match Result", opencv_needle)
cv.waitKey(0)

print count
if count>40:
    print "Yes Success!"
else:
    print "False Face!"
#cv2.waitKey(0)
#cv2.destroyAllWindows()


编译环境Opencv2.4 Python2.7

这个大家注意就好了。

你可能感兴趣的:(Python,OpenCv)