Keras中权重weight的初始化

Keras 的原始构造模块是模型,最简单的模型称为序贯模型, Keras 的序贯模型是神经网络层的线性管道 ( 堆栈) 。

以下代码段定义了 一个包含 12 个人工神经元的单层 网络,它预计有 8 个输入变量 ( 也称为特征):

from keras.models import Sequential

model =Sequential()
model.add(12,input_dim=8,kernel_initializer='random_uniform')

每个神经元可以用特定的权重进行初始化 。 Keras 提供了 几个选择 , 其中最常用的选择如下所示。

  • random_unifrom:权重被初始化为(-0.5,0.5)之间的均匀随机的微小数值,换句话说,给定区间里的任何值都可能作为权重 。
  • random_normal:根据高斯分布初始化权重,其中均值为0,标准差为0.05。
  • zero:所有权重被初始化为0。

 

你可能感兴趣的:(深度学习,Keras)