数据分析习题Python

本次作业是emu193教程的课后作业,来源自:

https://nbviewer.jupyter.org/github/schmit/cme193-ipython-notebooks-lecture/blob/master/Exercises.ipynb

Part 1

For each of the four datasets...

  • Compute the mean and variance of both x and y
  • Compute the correlation coefficient between x and y
  • Compute the linear regression line:  (hint: use statsmodels and look at the Statsmodels notebook)

第一部分主要是要求我们对读入的数据进行分析,求出均值,方差,相关系数,线性拟合等等。代码如下

# coding: utf-8
import random

import numpy as np
import scipy as sp
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

import statsmodels.api as sm
import statsmodels.formula.api as smf

sns.set_context("talk")

anascombe = pd.read_csv('anscombe.csv')
anascombe.head()

print("\nThe mean of x and y:")
print(anascombe.groupby(['dataset']).mean())


print("\nThe varience of x and y:")
print(anascombe.groupby(['dataset']).var())


print("\nThe correlation coefficient of x and y:")
print(anascombe.groupby(["dataset"]).corr())

keys = ['I', 'II', 'III', 'IV']  
for k in keys:  
    lin_model = smf.ols('y ~ x', anascombe[anascombe['dataset'] == k]).fit()  
    print('\nThe linear model for dataset', k)  
    print(lin_model.summary())

运行结果如下:

The mean of x and y:
           x         y
dataset
I        9.0  7.500909
II       9.0  7.500909
III      9.0  7.500000
IV       9.0  7.500909

The varience of x and y:
            x         y
dataset
I        11.0  4.127269
II       11.0  4.127629
III      11.0  4.122620
IV       11.0  4.123249

The correlation coefficient of x and y:
                  x         y
dataset
I       x  1.000000  0.816421
        y  0.816421  1.000000
II      x  1.000000  0.816237
        y  0.816237  1.000000
III     x  1.000000  0.816287
        y  0.816287  1.000000
IV      x  1.000000  0.816521
        y  0.816521  1.000000

The linear model for dataset I
                            OLS Regression Results
==============================================================================
Dep. Variable:                      y   R-squared:                       0.667
Model:                            OLS   Adj. R-squared:                  0.629
Method:                 Least Squares   F-statistic:                     17.99
Date:                Mon, 11 Jun 2018   Prob (F-statistic):            0.00217
Time:                        18:10:13   Log-Likelihood:                -16.841
No. Observations:                  11   AIC:                             37.68
Df Residuals:                       9   BIC:                             38.48
Df Model:                           1
Covariance Type:            nonrobust
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
Intercept      3.0001      1.125      2.667      0.026       0.456       5.544
x              0.5001      0.118      4.241      0.002       0.233       0.767
==============================================================================
Omnibus:                        0.082   Durbin-Watson:                   3.212
Prob(Omnibus):                  0.960   Jarque-Bera (JB):                0.289
Skew:                          -0.122   Prob(JB):                        0.865
Kurtosis:                       2.244   Cond. No.                         29.1
==============================================================================

The linear model for dataset II
                            OLS Regression Results
==============================================================================
Dep. Variable:                      y   R-squared:                       0.666
Model:                            OLS   Adj. R-squared:                  0.629
Method:                 Least Squares   F-statistic:                     17.97
Date:                Mon, 11 Jun 2018   Prob (F-statistic):            0.00218
Time:                        18:10:13   Log-Likelihood:                -16.846
No. Observations:                  11   AIC:                             37.69
Df Residuals:                       9   BIC:                             38.49
Df Model:                           1
Covariance Type:            nonrobust
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
Intercept      3.0009      1.125      2.667      0.026       0.455       5.547
x              0.5000      0.118      4.239      0.002       0.233       0.767
==============================================================================
Omnibus:                        1.594   Durbin-Watson:                   2.188
Prob(Omnibus):                  0.451   Jarque-Bera (JB):                1.108
Skew:                          -0.567   Prob(JB):                        0.575
Kurtosis:                       1.936   Cond. No.                         29.1
==============================================================================

The linear model for dataset III
                            OLS Regression Results
==============================================================================
Dep. Variable:                      y   R-squared:                       0.666
Model:                            OLS   Adj. R-squared:                  0.629
Method:                 Least Squares   F-statistic:                     17.97
Date:                Mon, 11 Jun 2018   Prob (F-statistic):            0.00218
Time:                        18:10:13   Log-Likelihood:                -16.838
No. Observations:                  11   AIC:                             37.68
Df Residuals:                       9   BIC:                             38.47
Df Model:                           1
Covariance Type:            nonrobust
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
Intercept      3.0025      1.124      2.670      0.026       0.459       5.546
x              0.4997      0.118      4.239      0.002       0.233       0.766
==============================================================================
Omnibus:                       19.540   Durbin-Watson:                   2.144
Prob(Omnibus):                  0.000   Jarque-Bera (JB):               13.478
Skew:                           2.041   Prob(JB):                      0.00118
Kurtosis:                       6.571   Cond. No.                         29.1
==============================================================================

The linear model for dataset IV
                            OLS Regression Results
==============================================================================
Dep. Variable:                      y   R-squared:                       0.667
Model:                            OLS   Adj. R-squared:                  0.630
Method:                 Least Squares   F-statistic:                     18.00
Date:                Mon, 11 Jun 2018   Prob (F-statistic):            0.00216
Time:                        18:10:13   Log-Likelihood:                -16.833
No. Observations:                  11   AIC:                             37.67
Df Residuals:                       9   BIC:                             38.46
Df Model:                           1
Covariance Type:            nonrobust
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
Intercept      3.0017      1.124      2.671      0.026       0.459       5.544
x              0.4999      0.118      4.243      0.002       0.233       0.766
==============================================================================
Omnibus:                        0.555   Durbin-Watson:                   1.662
Prob(Omnibus):                  0.758   Jarque-Bera (JB):                0.524
Skew:                           0.010   Prob(JB):                        0.769
Kurtosis:                       1.931   Cond. No.                         29.1
==============================================================================

Part 2

Using Seaborn, visualize all four datasets.

hint: use sns.FacetGrid combined with plt.scatter

这部分主要是对数据进行可视化处理,Python代码如下

# coding: utf-8
import random

import numpy as np
import scipy as sp
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

import statsmodels.api as sm
import statsmodels.formula.api as smf

sns.set_context("talk")

anascombe = pd.read_csv('anscombe.csv')
anascombe.head()

m = sns.FacetGrid(anascombe, col="dataset")    
m.map(plt.scatter, "x","y")  

运行结果如下:

数据分析习题Python_第1张图片

你可能感兴趣的:(高级编程技术作业)