TensorFlow在MNIST中的应用-训练过程的可视化

参考:

《TensorFlow技术解析与实战》


########################################################################################

训练过程的可视化TensorBoard

# -*- coding:utf-8 -*-
# ==============================================================================
# 20171114
# HelloZEX
# 训练可视化
# 注意一下,我是在SparkMNIST文件夹内打开Terminal的所以
# zhengxinxin@ubuntu:~/Desktop/PyCharm/Spark/SparkMNIST$
# 在后面键入tensorboard --logdir=logs/mnist_with_summaries
# Starting TensorBoard 47 at http://0.0.0.0:6006
# 然后在浏览器中打开网址 http://0.0.0.0:6006 或者 http://localhost:6006/ 即可
# ==============================================================================

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import sys
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

FLAGS = None

def train():
  # Import data
  mnist = input_data.read_data_sets("MNIST_Labels_Images", one_hot=True, fake_data=FLAGS.fake_data)
  sess = tf.InteractiveSession()
  # Create a multilayer model.
  # Input placeholders
  with tf.name_scope('input'):
    x = tf.placeholder(tf.float32, [None, 784], name='x-input')
    y_ = tf.placeholder(tf.float32, [None, 10], name='y-input')

  with tf.name_scope('input_reshape'):
    image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])
    tf.summary.image('input', image_shaped_input, 10)

  # We can't initialize these variables to 0 - the network will get stuck.
  def weight_variable(shape):
    """Create a weight variable with appropriate initialization."""
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

  def bias_variable(shape):
    """Create a bias variable with appropriate initialization."""
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

  def variable_summaries(var):
    #对一个张量添加多个描述
    with tf.name_scope('summaries'):
      mean = tf.reduce_mean(var)
      tf.summary.scalar('mean', mean)#均值
      with tf.name_scope('stddev'):
        stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))
      tf.summary.scalar('stddev', stddev)#标准差
      tf.summary.scalar('max', tf.reduce_max(var))#最大
      tf.summary.scalar('min', tf.reduce_min(var))#最小
      tf.summary.histogram('histogram', var)#绘制张量经过激活函数前后的变化

  def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):
    # 为确保计算图中各个层的分组,给每一层添加一个name_scope
    with tf.name_scope(layer_name):
      # This Variable will hold the state of the weights for the layer
      with tf.name_scope('weights'):
        weights = weight_variable([input_dim, output_dim])
        variable_summaries(weights)
      with tf.name_scope('biases'):
        biases = bias_variable([output_dim])
        variable_summaries(biases)
      with tf.name_scope('Wx_plus_b'):
        preactivate = tf.matmul(input_tensor, weights) + biases
        tf.summary.histogram('pre_activations', preactivate)
      activations = act(preactivate, name='activation')
      tf.summary.histogram('activations', activations)
      return activations

  hidden1 = nn_layer(x, 784, 500, 'layer1')

  with tf.name_scope('dropout'):
    keep_prob = tf.placeholder(tf.float32)
    tf.summary.scalar('dropout_keep_probability', keep_prob)
    dropped = tf.nn.dropout(hidden1, keep_prob)

  # Do not apply softmax activation yet, see below.
  y = nn_layer(dropped, 500, 10, 'layer2', act=tf.identity)

  with tf.name_scope('cross_entropy'):
    # So here we use tf.nn.softmax_cross_entropy_with_logits on the
    # raw outputs of the nn_layer above, and then average across
    # the batch.
    diff = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)
    with tf.name_scope('total'):
      cross_entropy = tf.reduce_mean(diff)
  tf.summary.scalar('cross_entropy', cross_entropy)

  with tf.name_scope('train'):
    train_step = tf.train.AdamOptimizer(FLAGS.learning_rate).minimize(
        cross_entropy)

  with tf.name_scope('accuracy'):
    with tf.name_scope('correct_prediction'):
      correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
    with tf.name_scope('accuracy'):
      accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
  tf.summary.scalar('accuracy', accuracy)

  # Merge all the summaries and write them out to /tmp/tensorflow/mnist/logs/mnist_with_summaries (by default)
  merged = tf.summary.merge_all()
  train_writer = tf.summary.FileWriter(FLAGS.log_dir + '/train', sess.graph)
  test_writer = tf.summary.FileWriter(FLAGS.log_dir + '/test')
  tf.global_variables_initializer().run()

  # Train the model, and also write summaries.
  # Every 10th step, measure test-set accuracy, and write test summaries
  # All other steps, run train_step on training data, & add training summaries

  def feed_dict(train):
    """Make a TensorFlow feed_dict: maps data onto Tensor placeholders."""
    if train or FLAGS.fake_data:
      xs, ys = mnist.train.next_batch(100, fake_data=FLAGS.fake_data)
      k = FLAGS.dropout
    else:
      xs, ys = mnist.test.images, mnist.test.labels
      k = 1.0
    return {x: xs, y_: ys, keep_prob: k}

  for i in range(FLAGS.max_steps):
    if i % 10 == 0:  # Record summaries and test-set accuracy
      summary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False))
      test_writer.add_summary(summary, i)
      print('Accuracy at step %s: %s' % (i, acc))
    else:  # Record train set summaries, and train
      if i % 100 == 99:  # Record execution stats
        run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
        run_metadata = tf.RunMetadata()
        summary, _ = sess.run([merged, train_step],
                              feed_dict=feed_dict(True),
                              options=run_options,
                              run_metadata=run_metadata)
        train_writer.add_run_metadata(run_metadata, 'step%03d' % i)
        train_writer.add_summary(summary, i)
        print('Adding run metadata for', i)
      else:  # Record a summary
        summary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))
        train_writer.add_summary(summary, i)
  train_writer.close()
  test_writer.close()


def main(_):
  if tf.gfile.Exists(FLAGS.log_dir):
    tf.gfile.DeleteRecursively(FLAGS.log_dir)
  tf.gfile.MakeDirs(FLAGS.log_dir)
  train()


if __name__ == '__main__':
  parser = argparse.ArgumentParser()
  parser.add_argument('--fake_data', nargs='?', const=True, type=bool,
                      default=False,
                      help='If true, uses fake data for unit testing.')
  parser.add_argument('--max_steps', type=int, default=1000,
                      help='Number of steps to run trainer.')
  parser.add_argument('--learning_rate', type=float, default=0.001,
                      help='Initial learning rate')
  parser.add_argument('--dropout', type=float, default=0.9,
                      help='Keep probability for training dropout.')
  parser.add_argument('--data_dir', type=str, default='MNIST_Labels_Images',
                      help='Directory for storing input data')
  parser.add_argument('--log_dir', type=str, default='logs/mnist_with_summaries',
                      help='Summaries log directory')
  #/home/zhengxinxin/Desktop/PyCharm/Spark/SparkMNIST/logs/mnist_with_summaries
  FLAGS, unparsed = parser.parse_known_args()
  tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)

########################################################################################

训练的图结构:

TensorFlow在MNIST中的应用-训练过程的可视化_第1张图片
HISTOGRAMS:

TensorFlow在MNIST中的应用-训练过程的可视化_第2张图片

等等等。。。


你可能感兴趣的:(TensorFlow)