深度学习: 从新视角 综述 Detection算法

Foreword

Continually updated,Constantly record my new summary of the Detection Algorithm。

Stage Handling

Stage Num Algorithm
4 R-CNN、SPPNet、Cascade R-CNN
2 Fast R-CNN、Faster R-CNN、R-FCN、Mask R-CNN、Light-head R-CNN、SNIP、R-FCN-3000、SNIPER
1 YOLOv1、SSD、YOLOv2、DSSD、RetinaNet、YOLOv3

End-to-end Handling

End-to-end Algorithm
× R-CNN、SPPNet
Fast R-CNN、Faster R-CNN、YOLOv1、SSD、R-FCN、YOLOv2、DSSD、Mask R-CNN、RetinaNet、Light-head R-CNN、SNIP、R-FCN-3000、YOLOv3、SNIPER

RoI-wise subnetwork Handling

RoI-wise subnetwork Algorithm
× YOLOv1、SSD、YOLOv2、DSSD、RetinaNet、YOLOv3、R-FCN、Light-head R-CNN、R-FCN-3000
R-CNN、SPPNet、Fast R-CNN、Faster R-CNN、Mask R-CNN、SNIP、Cascade R-CNN、SNIPER

Scale Handling

Scale Handling Algorithm Sample Diagram
Image Pyramid SNIP、SNIPER 深度学习: 从新视角 综述 Detection算法_第1张图片
Single Feature R-CNN、SPPNet、Fast R-CNN、Faster R-CNN、YOLOv1、R-FCN、Light-head R-CNN、R-FCN-3000 深度学习: 从新视角 综述 Detection算法_第2张图片
Pyramidal Feature SSD、YOLOv2 深度学习: 从新视角 综述 Detection算法_第3张图片
Feature Pyramid Network FPN、DSSD、Mask R-CNN、Cascade R-CNN、PAN 深度学习: 从新视角 综述 Detection算法_第4张图片

Repeatability Handling

Decrease repetition Annotation
SPPNet 去除卷积的重复抽取
Fast R-CNN 去除卷积的重复抽取
R-FCN 去除RoI-wise network的重复计算
Light-head R-CNN 去除每个类都要单独进行的location regression
R-FCN-3000 去除每个类都要单独进行的location regression
Increase repetition Annotation
SDD 增加feature map的选取数量
YOLOv2 增加feature map的选取数量
FPN 增加feature map的选取数量
SNIP 增加image scale的数量
Cascade R-CNN 增加RoI-wise network的数量
PAN 增加feature map的选取数量

Basemodel Handling

Algorithm AlexNet ZFNet GoogleNet VGGNet DarkNet ResNet FPN(+ResNet) PAN(+ResNet) DetNet
R-CNN
SPPNet
Fast R-CNN
Faster R-CNN
YOLOv1
SSD
R-FCN
YOLOv2
FPN
DSSD
Mask R-CNN
DCN
RetinaNet
Light-head R-CNN
Relation Network
SNIP
Cascade R-CNN
R-FCN-3000
PAN
YOLOv3
DetNet
SNIPER

Classification Handling

Algorithm SVM Softmax loss Focal loss
R-CNN
SPPNet
Fast R-CNN
Faster R-CNN
YOLOv1
SSD
R-FCN
YOLOv2
FPN
DSSD
Mask R-CNN
DCN
RetinaNet
Light-head R-CNN
Relation Network
SNIP
Cascade R-CNN
R-FCN-3000
PAN
YOLOv3
DetNet
SNIPER

Reg_loss Handling

Algorithm L2 loss Smooth L1 loss
R-CNN
SPPNet
Fast R-CNN
Faster R-CNN
YOLOv1
SSD
R-FCN
YOLOv2
FPN
DSSD
Mask R-CNN
DCN
RetinaNet
Light-head R-CNN
Relation Network
SNIP
Cascade R-CNN
R-FCN-3000
PAN
YOLOv3
DetNet
SNIPER

Encode/Decode Handling

Role: normalize the target, making the regression task simple.

Algorithm The earliest target [xcwa,ycha,logw,logh] [ x c w a , y c h a , log ⁡ w , log ⁡ h ] Others
R-CNN
SPPNet
Fast R-CNN
Faster R-CNN
YOLOv1
SSD
R-FCN
YOLOv2
FPN
DSSD
Mask R-CNN
DCN
RetinaNet
Light-head R-CNN
Relation Network
SNIP
Cascade R-CNN
R-FCN-3000
PAN
YOLOv3
DetNet
SNIPER

你可能感兴趣的:(深度学习)