3.统计学习方法—logistic regression

文章目录

  • 1. logistic模型
    • 1.2.参数估计
    • 1.3 案例及代码
    • 1.4 sklearn调包实现

1. logistic模型

回归模型: f ( x ) = 1 1 + e − w x f(x) = \frac{1}{1+e^{-wx}} f(x)=1+ewx1
其中wx线性函数: w x = w 0 ∗ x 0 + w 1 ∗ x 1 + w 2 ∗ x 2 + . . . + w n ∗ x n , ( x 0 = 1 ) wx =w_0*x_0 + w_1*x_1 + w_2*x_2 +...+w_n*x_n,(x_0=1) wx=w0x0+w1x1+w2x2+...+wnxn,(x0=1)
对于二分类的logistic:
P ( Y = 1 ∣ x ) = e w ⋅ x 1 + e w x P(Y=1|x)=\frac{e^{w·x}}{1+e^{wx}} P(Y=1x)=1+ewxewx

P ( Y = 0 ∣ x ) = 1 1 + e w x P(Y=0|x)=\frac{1}{1+e^{wx}} P(Y=0x)=1+ewx1

在解释系数的时候采用优势比:一件事情发生的机率(odds)是指该事件发生的概率与不发生的概率的比值。

如果事情的发生概率是P,则该事件发生的机率是 P 1 − P \frac{P}{1-P} 1PP,该事件的对数几率或者logit函数是:
l o g i t ( p ) = log ⁡ P 1 − P logit(p)= \log \frac{P}{1-P} logit(p)=log1PP
对于logistic来说:
log ⁡ P ( Y = 1 ∣ x ) 1 − P ( Y = 1 ∣ x ) = w ⋅ x \log \frac{P(Y=1|x)}{1-P(Y=1|x)} = w·x log1P(Y=1x)P(Y=1x)=wx

1.2.参数估计

极大似然法,然后取对数似然函数

最优化:梯度下降法、拟牛顿法

1.3 案例及代码

from math import exp
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler


def load_data():
    iris = load_iris()
    df = pd.DataFrame(iris.data,columns = iris.feature_names)
    df['label'] = iris.target
    df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
    data = np.array(df.iloc[:100, [0, 1, -1]])
    return data[:,:2] , data[:,-1]

class LogisticRegressionClassifier:
    def __init__(self,max_iter=200,learning_rate=0.01):
        self.max_iter = max_iter
        self.learning_rate = learning_rate

    def sigmod(self, x):
        return 1 / (1+exp(-x))

    def data_matrix(self, X):
        data_mat = []
        for d in X:
            data_mat.append([1.0 ,*d]) # 单星号是多组参数以元组的形式传参,双星号是字典
        return data_mat

    def fit(self, X, y):
        data_mat = self.data_matrix(X)
        self.weights = np.zeros((len(data_mat[0]),1),dtype=np.float32)

        for iter_ in range(self.max_iter):
            for i in range(len(X)):
                result = self.sigmod(np.dot(data_mat[i],self.weights))    # dot矩阵乘法
                error = y[i] - result
                self.weights += self.learning_rate * error * np.transpose([data_mat[i]])  #transpose矩阵转置

    def score(self, X_test, y_test):
        right = 0
        X_test = self.data_matrix(X_test)
        for x, y in zip(X_test, y_test):      #zip就是将x,y变成一对一对的,就像(1,22)这种
            result = np.dot(x, self.weights)
            if (result > 0 and y == 1) or (result < 0 and y == 0):
                right += 1
        return right / len(X_test)


if __name__ == '__main__':

    X,y = load_data()

    X_train,X_test,y_train,y_test = train_test_split(X,y,train_size=0.7,test_size=0.3)
    sc = StandardScaler()
    sc.fit(X_train)  # 计算均值和方差
    x_train_std = sc.transform(X_train) #利用计算好的方差和均值进行Z分数标准化
    x_test_std = sc.transform(X_test)

    model = LogisticRegressionClassifier()
    model.fit(x_train_std,y_train)
    print(model.score(x_test_std,y_test))

在这里插入图片描述

1.4 sklearn调包实现

这篇文章对sklearn实现logistic讲的特别详细,还有案例和代码

你可能感兴趣的:(统计学习方法)