深度学习 | 实战4-将LENET封装为class,并进行分类

————————————————————————————
原文发表于夏木青 | JoselynZhao Blog,欢迎访问博文原文。
————————————————————————————

Github源码

深度学习教程与实战案列系列文章


深度学习 | 绪论
深度学习 | 线性代数基础
深度学习 | 机器学习基础
深度学习 | 实践方法论
深度学习 | 应用
深度学习 | 安装conda、opencv、pycharm以及相关问题
深度学习 | 工具及实践(TensorFlow)
深度学习 | TensorFlow 命名机制和变量共享、变量赋值与模型封装
深度学习 | TFSlim介绍
深度学习 | TensorFlow可视化
深度学习 | 训练及优化方法
深度学习 | 模型评估与梯度下降优化
深度学习 | 物体检测
深度学习| 实战1-python基本操作
深度学习 | 实战2-TensorFlow基础
深度学习 | 实战3-设计变量共享网络进行MNIST分类
深度学习 | 实战4-将LENET封装为class,并进行分类
深度学习 | 实战5-用slim 定义Lenet网络,并训练测试
深度学习 | 实战6-利用tensorboard实现卷积可视化
深度学习 | 实战7- 连体网络MINIST优化
深度学习 | 实战8 - 梯度截断
深度学习 | 实战9- 参数正则化


要求

将LENET封装为class,并用此封装好的lenet对minist进行分类。

有关lenet定义请参考卷积网络课件最后2页;class封装的内容,请参考class封装课件

1. lenet 结构如附件描述。注意:

(1)lenet 输入为32x32,而minist为28x28,故需要先对数据进行填充,例如:

import numpy as np

#Pad images with 0s
X_train      = np.pad(X_train, ((0,0),(2,2),(2,2),(0,0)), 'constant')
X_validation = np.pad(X_validation, ((0,0),(2,2),(2,2),(0,0)), 'constant')
X_test       = np.pad(X_test, ((0,0),(2,2),(2,2),(0,0)), 'constant')
    
print("Updated Image Shape: {}".format(X_train[0].shape))

from sklearn.utils import shuffle

X_train, y_train = shuffle(X_train, y_train)

(2)lenet 输出 10位的 one-hot形式的输出 logits, 故minist的标签读取需采用one-hot的形式。

采用softmax 交叉熵作为损失函数。用softmax进行分类。

2. 在init函数中传入初始化变量所需的mu, sigma参数,以及其他所需定制化参数。

例如:

def __init__(self,mu):

    self.mu=mu

设计需要的输入输出接,例如,如果想把对外数据的交互也封装在class里:

self.raw_input_image = tf.placeholder(tf.float32, [None, 784]) 或者需要的进一步变换,例如

self.input_x = tf.reshape(self.raw_input_image, [-1, 28, 28, 1])

或者把外部交互的事情交给外部去做,class只是想实现一个纯净的net计算通路:

self.input_x=input (input是你外部给的输入引用)

3. 对lenet中常见的conv层,fc层,pooling层定义统一的定制化功能层graph绘图函数. 为层次化组织网络,给每个层定义一个不同的名字空间,例如:

def conv(w_shape, scope_name, .......):

    with tf.variable_scope(scope_name) as scope:

        xxxx.....

  1. 绘制整个网络计算图的函数,_build_graph(). 这里要求调用_build_graph()的过程放在 _init_函数里,这样外部每调用并生成一个class的实例,实际上就自动绘制了一次lenet。

_build_graph()绘制整个lenet的时候,调用之前你定义的各个功能层,并逐层搭建出整个网络。期望网络对外的输出tensor引用都用self记录,例如:

def __init__(self, config):
   self.config = config
   self._build_graph() 

    .....
def _build_graph(self, network_name='Lenet'):
    self._setup_placeholders_graph()
    self._build_network_graph(network_name)
    self._compute_loss_graph()
    self._compute_acc_graph()
    ....
  1. 在外部调用该模块并通过实例化实现对lenet的绘制,例如:
......

from lenet import Lenet (lenet.py 里定义的 class Lenet.......

lenet_part = Lenet() 

这样调用一下已经完成了lenet的绘制了,你需要引用的lenet中间的tensor都保存在lenet_part里

例如:

sess.run(train_op,feed_dict={lenet.raw_input_image: batch[0],lenet.raw_input_label: batch[1]})

要求:用class封装好的lenet对minist进行分类,训练和模型定义分开成两个文件train.py, lenet.py,打印训练和测试截图,测试分类准确率ACC。

实验与结果

运行截图
图 1
深度学习 | 实战4-将LENET封装为class,并进行分类_第1张图片

图 2
深度学习 | 实战4-将LENET封装为class,并进行分类_第2张图片

参数设置
深度学习 | 实战4-将LENET封装为class,并进行分类_第3张图片

源码展示

LENET



class Lenet():
    def __init__(self,mu,sigma,lr=0.02):
        self.mu = mu
        self.sigma = sigma
        self.lr = lr
        self._build_graph()


    def _build_graph(self,network_name = "Lenet"):
        self._setup_placeholders_graph()
        self._build_network_graph(network_name)
        self._compute_loss_graph()
        self._compute_acc_graph()
        self._create_train_op_graph()

    def _setup_placeholders_graph(self):
        self.x  = tf.placeholder("float",shape=[None,32,32,1],name='x')
        self.y_ = tf.placeholder("float",shape = [None,10],name ="y_")

    def _cnn_layer(self,scope_name,W_name,b_name,x,filter_shape,conv_stride,padding_tag="VALID"):
        with tf.variable_scope(scope_name):
            conv_W = tf.Variable(tf.truncated_normal(shape=filter_shape, mean=self.mu, stddev=self.sigma), name=W_name)
            conv_b = tf.Variable(tf.zeros(filter_shape[3]),name=b_name)
            conv = tf.nn.conv2d(x, conv_W, strides=conv_stride, padding=padding_tag) + conv_b
            return conv

    def _pooling_layer(self,scope_name,x,pool_ksize,pool_strides,padding_tag="VALID"):
        with tf.variable_scope(scope_name):
            pool = tf.nn.max_pool(x, ksize=pool_ksize, strides=pool_strides, padding=padding_tag)
            return pool
    def _fully_connected_layer(self,scope_name,W_name,b_name,x,W_shape):
        with tf.variable_scope(scope_name):
            fc_W = tf.Variable(tf.truncated_normal(shape=W_shape, mean=self.mu, stddev=self.sigma),name=W_name)
            fc_b = tf.Variable(tf.zeros(W_shape[1]),name=b_name)
            fc = tf.matmul(x, fc_W) + fc_b
            return fc

    def _build_network_graph(self,scope_name):
        with tf.variable_scope(scope_name):
            conv1 =self._cnn_layer("conv1","w1","b1",self.x,[5,5,1,6],[1, 1, 1, 1])
            self.conv1 = tf.nn.relu(conv1)
            self.pool1 = self._pooling_layer("pool1",self.conv1,[1, 2, 2, 1],[1, 2, 2, 1])
            conv2 = self._cnn_layer("conv2","w2","b2",self.pool1,[5,5,6,16],[1, 1, 1, 1])
            self.conv2 = tf.nn.relu(conv2)
            self.pool2 = self._pooling_layer("pool2",self.conv2,[1, 2, 2, 1],[1, 2, 2, 1])
            self.fc0 = self._flatten(self.pool2)
            fc1 = self._fully_connected_layer("fc1","wfc1","bfc1",self.fc0,[400,120])
            self.fc1 = tf.nn.relu(fc1)
            fc2 = self._fully_connected_layer("fc2","wfc2","bfc2",self.fc1,[120,84])
            self.fc2 = tf.nn.relu(fc2)
            self.y = self._fully_connected_layer("fc3","wfc3","bfc3",self.fc2,[84,10])

    def _flatten(self,conv):
        conv1 = tf.reshape(conv, [-1, 400])
        return conv1

    def _compute_loss_graph(self):
        with tf.name_scope("loss_function"):
            loss = tf.nn.softmax_cross_entropy_with_logits(labels = self.y_,logits = self.y)
            self.loss = tf.reduce_mean(loss)

    def _compute_acc_graph(self):
        with tf.name_scope("acc_function"):
            correct_prediction = tf.equal(tf.argmax(self.y,1),tf.argmax(self.y_,1))
            self.accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))

    def _create_train_op_graph(self):
        with tf.name_scope("train_function"):
            self.cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=self.y,labels=self.y_))
            self.train_step = tf.train.AdamOptimizer(self.lr).minimize(self.cross_entropy)

train

from lenet import  *

if __name__ =="__main__":
    mnist = input_data.read_data_sets('../../../data/mnist', one_hot=True)
    x_test = np.reshape(mnist.test.images,[-1,28,28,1])
    x_test = np.pad(x_test, ((0, 0), (2, 2), (2, 2), (0, 0)), 'constant')    # print("Updated Image Shape: {}".format(X_train[0].shape))
    tf.logging.set_verbosity(old_v)

    iteratons = 30000
    batch_size = 64
    ma = 0
    sigma = 0.1
    lr = 0.01
    mylenet = Lenet(ma,sigma,lr)

    with tf.Session() as sess:
        sess.run(tf.global_variables_initializer())
        for ii in range(iteratons):
            batch_xs,batch_ys = mnist.train.next_batch(batch_size)
            batch_xs = np.reshape(batch_xs,[-1,28,28,1])
            batch_xs = np.pad(batch_xs,((0, 0), (2, 2), (2, 2), (0, 0)), 'constant')

            sess.run(mylenet.train_step,feed_dict ={mylenet.x:batch_xs,mylenet.y_:batch_ys})
            if ii % 500 == 1:
                acc = sess.run(mylenet.accuracy,feed_dict ={mylenet.x:x_test,mylenet.y_:mnist.test.labels})
                print("%5d: accuracy is: %4f" % (ii, acc))

        print('[accuracy,loss]:', sess.run([mylenet.accuracy], feed_dict={mylenet.x:x_test,mylenet.y_:mnist.test.labels}))


你可能感兴趣的:(深度学习,TensorFlow,深度学习系统学习教程与实战案列)