solver文件:
# 定义网络结构的文件
net: "deblurring_train_test.prototxt"
# test_iter 测试集向前传递多少次
# batch size * test_iter = 测试集图片数
test_iter: 100
# 每100次迭代执行一次测试
test_interval: 100
# 基础学习速率,动量,网络权重衰减
base_lr: 0.0000002
#momentum: 0.9
weight_decay: 0.0005
# 学习速率策略(如果loss降不下去,就改学习速率---------------或者也可能是数据出错)
lr_policy: "inv"
gamma: 0.0001
power: 0.75
# 每100次迭代显示一次
display: 100
# 最大迭代数量
max_iter: 10000
# 每1000次迭代保存一次
snapshot: 1000
#保存的.caffemodel和.solverstate文件名字的前半部分
snapshot_prefix: "deblurring"
# 模式CPU or GPU
solver_mode: GPU
以下内容转自:http://www.cnblogs.com/denny402/p/5074049.html
--------------------------------------------------------------------------------------------------------------------------------------------------------
第一部分:
--------------------------------------------------------------------------------------------------------------------------------------------------------
solver算是caffe的核心的核心,它协调着整个模型的运作。caffe程序运行必带的一个参数就是solver配置文件。运行代码一般为
# caffe train --solver=*_slover.prototxt
在Deep Learning中,往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解。solver的主要作用就是交替调用前向(forward)算法和后向(backward)算法来更新参数,从而最小化loss,实际上就是一种迭代的优化算法。
到目前的版本,caffe提供了六种优化算法来求解最优参数,在solver配置文件中,通过设置type类型来选择。
type: "SGD"
),type: "AdaDelta"
),type: "AdaGrad"
),type: "Adam"
),type: "Nesterov"
) andtype: "RMSProp"
)具体的每种方法的介绍,请看文章后半部分,前半部分着重介绍solver配置文件的编写。
Solver的流程:
1. 设计好需要优化的对象,以及用于学习的训练网络和用于评估的测试网络。(通过调用另外一个配置文件prototxt来进行)
2. 通过forward和backward迭代的进行优化来跟新参数。
3. 定期的评价测试网络。 (可设定多少次训练后,进行一次测试)
4. 在优化过程中显示模型和solver的状态
在每一次的迭代过程中,solver做了这几步工作:
1、调用forward算法来计算最终的输出值,以及对应的loss
2、调用backward算法来计算每层的梯度
3、根据选用的slover方法,利用梯度进行参数更新
4、记录并保存每次迭代的学习率、快照,以及对应的状态。
接下来,我们先来看一个实例:
net: "examples/mnist/lenet_train_test.prototxt" test_iter: 100 test_interval: 500 base_lr: 0.01 momentum: 0.9 type: SGD weight_decay: 0.0005 lr_policy: "inv" gamma: 0.0001 power: 0.75 display: 100 max_iter: 20000 snapshot: 5000 snapshot_prefix: "examples/mnist/lenet" solver_mode: CPU
接下来,我们对每一行进行详细解译:
net: "examples/mnist/lenet_train_test.prototxt"
设置深度网络模型。每一个模型就是一个net,需要在一个专门的配置文件中对net进行配置,每个net由许多的layer所组成。每一个layer的具体配置方式可参考本系列文文章中的(2)-(5)。注意的是:文件的路径要从caffe的根目录开始,其它的所有配置都是这样。
也可用train_net和test_net来对训练模型和测试模型分别设定。例如:
train_net: "examples/hdf5_classification/logreg_auto_train.prototxt" test_net: "examples/hdf5_classification/logreg_auto_test.prototxt"
接下来第二行:
test_iter: 100
这个要与test layer中的batch_size结合起来理解。mnist数据中测试样本总数为10000,一次性执行全部数据效率很低,因此我们将测试数据分成几个批次来执行,每个批次的数量就是batch_size。假设我们设置batch_size为100,则需要迭代100次才能将10000个数据全部执行完。因此test_iter设置为100。执行完一次全部数据,称之为一个epoch
test_interval: 500
测试间隔。也就是每训练500次,才进行一次测试。
base_lr: 0.01
lr_policy: "inv"
gamma: 0.0001
power: 0.75
这四行可以放在一起理解,用于学习率的设置。只要是梯度下降法来求解优化,都会有一个学习率,也叫步长。base_lr用于设置基础学习率,在迭代的过程中,可以对基础学习率进行调整。怎么样进行调整,就是调整的策略,由lr_policy来设置。
lr_policy可以设置为下面这些值,相应的学习率的计算为:
multistep示例:
base_lr: 0.01 momentum: 0.9 weight_decay: 0.0005 # The learning rate policy lr_policy: "multistep" gamma: 0.9 stepvalue: 5000 stepvalue: 7000 stepvalue: 8000 stepvalue: 9000 stepvalue: 9500
接下来的参数:
momentum :0.9
上一次梯度更新的权重,具体可参看下一篇文章。
type: SGD
优化算法选择。这一行可以省掉,因为默认值就是SGD。总共有六种方法可选择,在本文的开头已介绍。
weight_decay: 0.0005
权重衰减项,防止过拟合的一个参数。
display: 100
每训练100次,在屏幕上显示一次。如果设置为0,则不显示。
max_iter: 20000
最大迭代次数。这个数设置太小,会导致没有收敛,精确度很低。设置太大,会导致震荡,浪费时间。
snapshot: 5000 snapshot_prefix: "examples/mnist/lenet"
快照。将训练出来的model和solver状态进行保存,snapshot用于设置训练多少次后进行保存,默认为0,不保存。snapshot_prefix设置保存路径。
还可以设置snapshot_diff,是否保存梯度值,默认为false,不保存。
也可以设置snapshot_format,保存的类型。有两种选择:HDF5 和BINARYPROTO ,默认为BINARYPROTO
solver_mode: CPU
设置运行模式。默认为GPU,如果你没有GPU,则需要改成CPU,否则会出错。
注意:以上的所有参数都是可选参数,都有默认值。根据solver方法(type)的不同,还有一些其它的参数,在此不一一列举。
--------------------------------------------------------------------------------------------------------------------------------------------------------
第二部分:
--------------------------------------------------------------------------------------------------------------------------------------------------------
上文提到,到目前为止,caffe总共提供了六种优化方法:
type: "SGD"
),type: "AdaDelta"
),type: "AdaGrad"
),type: "Adam"
),type: "Nesterov"
) andtype: "RMSProp"
)Solver就是用来使loss最小化的优化方法。对于一个数据集D,需要优化的目标函数是整个数据集中所有数据loss的平均值。
其中,fW(x(i))计算的是数据x(i)上的loss, 先将每个单独的样本x的loss求出来,然后求和,最后求均值。 r(W)是正则项(weight_decay),为了减弱过拟合现象。
如果采用这种Loss 函数,迭代一次需要计算整个数据集,在数据集非常大的这情况下,这种方法的效率很低,这个也是我们熟知的梯度下降采用的方法。
在实际中,通过将整个数据集分成几批(batches), 每一批就是一个mini-batch,其数量(batch_size)为N<<|D|,此时的loss 函数为:
有了loss函数后,就可以迭代的求解loss和梯度来优化这个问题。在神经网络中,用forward pass来求解loss,用backward pass来求解梯度。
在caffe中,默认采用的Stochastic Gradient Descent(SGD)进行优化求解。后面几种方法也是基于梯度的优化方法(like SGD),因此本文只介绍一下SGD。其它的方法,有兴趣的同学,可以去看文献原文。
1、Stochastic gradient descent(SGD)
随机梯度下降(Stochastic gradient descent)是在梯度下降法(gradient descent)的基础上发展起来的,梯度下降法也叫最速下降法,具体原理在网易公开课《机器学习》中,吴恩达教授已经讲解得非常详细。SGD在通过负梯度和上一次的权重更新值Vt的线性组合来更新W,迭代公式如下:
其中, 是负梯度的学习率(base_lr),是上一次梯度值的权重(momentum),用来加权之前梯度方向对现在梯度下降方向的影响。这两个参数需要通过tuning来得到最好的结果,一般是根据经验设定的。如果你不知道如何设定这些参数,可以参考相关的论文。
在深度学习中使用SGD,比较好的初始化参数的策略是把学习率设为0.01左右(base_lr: 0.01),在训练的过程中,如果loss开始出现稳定水平时,对学习率乘以一个常数因子(gamma),这样的过程重复多次。
对于momentum,一般取值在0.5--0.99之间。通常设为0.9,momentum可以让使用SGD的深度学习方法更加稳定以及快速。
关于更多的momentum,请参看Hinton的《A Practical Guide to Training Restricted Boltzmann Machines》。
实例:
base_lr: 0.01 lr_policy: "step" gamma: 0.1 stepsize: 1000 max_iter: 3500 momentum: 0.9
lr_policy设置为step,则学习率的变化规则为 base_lr * gamma ^ (floor(iter / stepsize))
即前1000次迭代,学习率为0.01; 第1001-2000次迭代,学习率为0.001; 第2001-3000次迭代,学习率为0.00001,第3001-3500次迭代,学习率为10-5
上面的设置只能作为一种指导,它们不能保证在任何情况下都能得到最佳的结果,有时候这种方法甚至不work。如果学习的时候出现diverge(比如,你一开始就发现非常大或者NaN或者inf的loss值或者输出),此时你需要降低base_lr的值(比如,0.001),然后重新训练,这样的过程重复几次直到你找到可以work的base_lr。
2、AdaDelta
AdaDelta是一种”鲁棒的学习率方法“,是基于梯度的优化方法(like SGD)。
具体的介绍文献:
M. Zeiler ADADELTA: AN ADAPTIVE LEARNING RATE METHOD. arXiv preprint, 2012.
示例:
net: "examples/mnist/lenet_train_test.prototxt" test_iter: 100 test_interval: 500 base_lr: 1.0 lr_policy: "fixed" momentum: 0.95 weight_decay: 0.0005 display: 100 max_iter: 10000 snapshot: 5000 snapshot_prefix: "examples/mnist/lenet_adadelta" solver_mode: GPU type: "AdaDelta" delta: 1e-6
从最后两行可看出,设置solver type为Adadelta时,需要设置delta的值。
3、AdaGrad
自适应梯度(adaptive gradient)是基于梯度的优化方法(like SGD)
具体的介绍文献:
Duchi, E. Hazan, and Y. Singer. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. The Journal of Machine Learning Research, 2011.
示例:
net: "examples/mnist/mnist_autoencoder.prototxt" test_state: { stage: 'test-on-train' } test_iter: 500 test_state: { stage: 'test-on-test' } test_iter: 100 test_interval: 500 test_compute_loss: true base_lr: 0.01 lr_policy: "fixed" display: 100 max_iter: 65000 weight_decay: 0.0005 snapshot: 10000 snapshot_prefix: "examples/mnist/mnist_autoencoder_adagrad_train" # solver mode: CPU or GPU solver_mode: GPU type: "AdaGrad"
4、Adam
是一种基于梯度的优化方法(like SGD)。
具体的介绍文献:
D. Kingma, J. Ba. Adam: A Method for Stochastic Optimization. International Conference for Learning Representations, 2015.
5、NAG
Nesterov 的加速梯度法(Nesterov’s accelerated gradient)作为凸优化中最理想的方法,其收敛速度非常快。
具体的介绍文献:
I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the Importance of Initialization and Momentum in Deep Learning. Proceedings of the 30th International Conference on Machine Learning, 2013.
示例:
net: "examples/mnist/mnist_autoencoder.prototxt" test_state: { stage: 'test-on-train' } test_iter: 500 test_state: { stage: 'test-on-test' } test_iter: 100 test_interval: 500 test_compute_loss: true base_lr: 0.01 lr_policy: "step" gamma: 0.1 stepsize: 10000 display: 100 max_iter: 65000 weight_decay: 0.0005 snapshot: 10000 snapshot_prefix: "examples/mnist/mnist_autoencoder_nesterov_train" momentum: 0.95 # solver mode: CPU or GPU solver_mode: GPU type: "Nesterov"
6、RMSprop
RMSprop是Tieleman在一次 Coursera课程演讲中提出来的,也是一种基于梯度的优化方法(like SGD)
具体的介绍文献:
T. Tieleman, and G. Hinton. RMSProp: Divide the gradient by a running average of its recent magnitude. COURSERA: Neural Networks for Machine Learning.Technical report, 2012.
示例:
net: "examples/mnist/lenet_train_test.prototxt" test_iter: 100 test_interval: 500 base_lr: 1.0 lr_policy: "fixed" momentum: 0.95 weight_decay: 0.0005 display: 100 max_iter: 10000 snapshot: 5000 snapshot_prefix: "examples/mnist/lenet_adadelta" solver_mode: GPU type: "RMSProp" rms_decay: 0.98
最后两行,需要设置rms_decay值。