线性递推式模板 hdu6198为例

今天打2017沈阳网络赛的时候,第五题好像是个找规律的题(因为我好像找出规律了,但是没写),队友直接一个模版,把我推出的前几项放进去后直接就可以把后面的弄出来。。。太强了

写这篇博客保存一下这个强无敌的模板,可以解决任何线性递推式.。这个板子是我一个学长从百度之星复赛上扒的杜教的板子。所以我们现在要做的是用推出递推式的前几项.,然后扔进这个板子就可以了。

mod换成题目的就OK,前几项丢的越多越好, 一般8个是绝对可以推出来的,个别的少一点也行。

模板

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
using namespace std;
#define rep(i,a,n) for (int i=a;i
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=1000000007;
ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}

int _,n;
namespace linear_seq {
    const int N=10010;
    ll res[N],base[N],_c[N],_md[N];

    vector<int> Md;
    void mul(ll *a,ll *b,int k) {
        rep(i,0,k+k) _c[i]=0;
        rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
        for (int i=k+k-1;i>=k;i--) if (_c[i])
            rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
        rep(i,0,k) a[i]=_c[i];
    }
    int solve(ll n,VI a,VI b) {
        ll ans=0,pnt=0;
        int k=SZ(a);
        assert(SZ(a)==SZ(b));
        rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;
        Md.clear();
        rep(i,0,k) if (_md[i]!=0) Md.push_back(i);
        rep(i,0,k) res[i]=base[i]=0;
        res[0]=1;
        while ((1ll<for (int p=pnt;p>=0;p--) {
            mul(res,res,k);
            if ((n>>p)&1) {
                for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
                rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
            }
        }
        rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
        if (ans<0) ans+=mod;
        return ans;
    }
    VI BM(VI s) {
        VI C(1,1),B(1,1);
        int L=0,m=1,b=1;
        rep(n,0,SZ(s)) {
            ll d=0;
            rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
            if (d==0) ++m;
            else if (2*L<=n) {
                VI T=C;
                ll c=mod-d*powmod(b,mod-2)%mod;
                while (SZ(C)0);
                rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
                L=n+1-L; B=T; b=d; m=1;
            } else {
                ll c=mod-d*powmod(b,mod-2)%mod;
                while (SZ(C)0);
                rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
                ++m;
            }
        }
        return C;
    }
    int gao(VI a,ll n) {
        VI c=BM(a);
        c.erase(c.begin());
        rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
        return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
    }
};

int main() {
    for (scanf("%d",&_);_;_--) {
        scanf("%d",&n);
        printf("%d\n",linear_seq::gao(VI{2,24,96,416,1536,5504,18944,64000,212992,702464},n-1));
    }
}

hdu6198

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
using namespace std;
#define rep(i,a,n) for (int i=a;i
#define per(i,a,n) for (int i=n-1;i>=a;i--)
#define pb push_back
#define mp make_pair
#define all(x) (x).begin(),(x).end()
#define fi first
#define se second
#define SZ(x) ((int)(x).size())
typedef vector<int> VI;
typedef long long ll;
typedef pair<int,int> PII;
const ll mod=998244353;
ll powmod(ll a,ll b)
{
    ll res=1;
    a%=mod;
    assert(b>=0);
    for(;b;b>>=1)
    {
        if(b&1)
            res=res*a%mod;
        a=a*a%mod;
    }
    return res;
}
int _,n;
namespace linear_seq {
    const int N=10010;
    ll res[N],base[N],_c[N],_md[N];
    vector<int> Md;
    void mul(ll *a,ll *b,int k) {
        for(int i = 0 ; i < k + k ; ++i)
        _c[i]=0;
        for(int i = 0 ; i < k ;++i)
         if (a[i])
         for(int j = 0 ;j < k ;++ j)
            _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
        for (int i=k+k-1;i>=k;i--)
            if (_c[i])
            for(int j = 0 ; j<(int ) Md.size() ; ++ j)
                _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
        for(int i =0 ; i< k ; ++i)
        a[i]=_c[i];
    }
    int solve(ll n,VI a,VI b) {
        ll ans=0,pnt=0;
        int k=SZ(a);
        assert( SZ(a) == SZ(b) );
        for(int i = 0 ;i < k ; ++ i)
         _md[k-1-i] = -a[i] ; _md[k] = 1 ;
        Md.clear() ;
        for(int i =0 ; i < k ; ++ i)
            if (_md[i]!=0)
                Md.push_back(i);
        for(int i = 0; i< k ;++ i)
         res[i]=base[i]=0;
        res[0]=1;
        while ((1ll<for (int p=pnt;p>=0;p--) {
            mul(res,res,k);
            if ((n>>p)&1) {
                for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
                for(int j = 0 ;j < (int)Md.size() ; ++ j)
                 res[ Md[j] ]=(res[ Md[j] ]-res[k]*_md[Md[j]])%mod;
            }
        }
        rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
        if (ans<0) ans+=mod;
        return ans;
    }
    VI BM(VI s) {
        VI C(1,1),B(1,1);
        int L=0,m=1,b=1;
        for(int n= 0 ;n < (int)s.size(); ++ n ) {
            ll d=0;
//            rep(i,0,L+1)
            for(int i =0 ; i < L +1 ;++ i)
            d=(d+(ll)C[i]*s[n-i])%mod;
            if (d==0) ++m;
            else if (2*L<=n) {
                VI T=C;
                ll c=mod-d*powmod(b,mod-2)%mod;
                while (SZ(C)0);
//                rep(i,0,SZ(B))
                for(int i =0 ; i < (int)B.size(); ++ i)
                    C[i+m]=(C[i+m]+c*B[i])%mod;
                L=n+1-L; B=T; b=d; m=1;
            } else {
                ll c=mod-d*powmod(b,mod-2)%mod;
                while (SZ(C)0);
                for(int i = 0 ;i <(int) B.size() ; ++ i)
                    C[i+m]=(C[i+m]+c*B[i])%mod;
                ++m;
            }
        }
        return C;
    }
    ll gao(VI a,ll n) {
        VI c=BM(a);
        c.erase(c.begin());
        for( int i = 0 ; i < (int)c.size( );++i )
            c[i]=(mod-c[i])%mod;
        return (ll)solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
    }
};

int main() {

        long long  ___ ;VI a;
        int N,v;
        a.push_back(4);
        a.push_back(12);
        a.push_back(33);
        a.push_back(88);
        a.push_back(232);
        a.push_back(609);
        a.push_back(1596);
    for (;~scanf("%lld",&___);)
        printf("%lld\n",linear_seq::gao(a,___-1));
    return 0 ;
}

你可能感兴趣的:(ACM,hdu)