- MATLAB环境下一种音频降噪优化方法—基于时频正则化重叠群收缩
哥廷根数学学派
信号处理小波分析图像处理语音识别人工智能
语音增强是语音信号处理领域中的一个重大分支,这一分支已经得到国内外学者的广泛研究。当今时代,随着近六十年来的不断发展,己经产生了许多有效的语音增强算法。根据语音增强过程中是否利用语音和噪声的先验信息,语音增强算法一般被归类为两类,一类是无先验信息的语音增强算法,另外一类则是具有先验信息的语音增强算法。在第一类无先验信息语音增强算法中,比较常用的语音增强算法有谱减算法、基于统计模型的算法、基于信号子
- Ambiq推出语音增强人工智能以消除物联网应用中的噪声
希尔贝壳AISHELL
智能语音人工智能物联网
超低功耗半导体解决方案供应商Ambiq®推出了其最新产品——神经网络语音增强器(NNSE),并已将该方案加入到neuralSPOT的(开源模型)ModelZoo中。这一高度优化过的AI模型可以高效实时地将背景噪声从设备对话中去除,从而在嘈杂的环境中实现清晰的语音捕获。与所有AmbiqModelZoo组件一样,NNSE包含脚本和工具,可帮助开发人员向其应用程序添加语音去噪功能。它还包含一个简单的图形
- 低信噪比环境下的语音端点检测
jUicE_g2R
经验模态分解EMD语音识别语言信号处理低信噪比matlab
端点检测技术是语音信号处理的关键技术之一为提高低信噪比环境下端点检测的准确率和稳健性,提出了一种非平稳噪声抑制和调制域谱减结合功率归一化倒谱距离的端点检测算法1端点检测1-1定义定义:在存在背景噪声的情况下检测出语音的起始点和结束点(这里的重点是噪声环境下语音信号的处理)1-2应用需求应用于语音信号处理:语音增强、语音识别、编码和传输需求是:人们希望在远场或者嘈杂的环境中也能用语音控制智能设备,因
- 语音技术的未来:识别更精准、应用更丰富!
virtaitech
人工智能gpu算力语音识别
引言随着科技的飞速发展,语音技术正迅猛进步,为我们的生活带来了全新的体验。ICASPP国际会议作为语音领域的重要盛会,汇聚了众多专家学者,展示了语音处理与识别技术的最新进展。本文将结合近年ICASPP上的最新进展和各大知名语音技术公司产品探讨这些技术点,从语音识别、语音增强、语音风格迁移到语音情感识别等多个方向,展望语音技术的未来,并深入探讨GPU算力在这一领域的重要作用。1.语音识别的进步ICA
- 转载_关于AEC算法的几点思考
williamwanglei
音频
一年前我剖析过开源的AEC算法,文章链接是语音增强和语音识别;时隔这么长时间,再过来看这个算法,略有体会,以下有几点个人思考:AEC算法的主要目的是自身音源消除,对于手机或者pc这类的通话场景,这类场景和音响场景稍有差异,两者遇到的主要问题会有些差异;对于视频通话这类场景,两个通信终端的时钟偏斜和漂移是不定的,而音箱场景这个是可以在硬件上加以解决的,但是音箱场景的非线性失真却比通信场景严重的,功率
- 麦克风阵列入门
孤芳剑影
信号与系统算法
文章引注:http://t.csdnimg.cn/QP7uC一、麦克风阵列的定义所谓麦克风阵列其实就是一个声音采集的系统,该系统使用多个麦克风采集来自于不同空间方向的声音。麦克风按照指定要求排列后,加上相应的算法(排列+算法)就可以解决很多房间声学问题,比如声源定位、去混响、语音增强、盲源分离等。二、麦克风指向性麦克风的方向性是指麦克风可以接收到语音的方向。声音可以从不同的方向传达到麦克风,麦克风
- 麦克风阵列技术 三 ( 声源定位 波束形成 去混响 麦克风阵列结构设计 声学结构确认流程)
sxau_zhangtao
人机语音交互人工智能声学结构确认流程声源定位波束形成去混响麦克风阵列结构设计
麦克风阵列技术麦克风阵列技术详解声源定位延时估计角度计算波束形成波束形成模型波束形成基本理论去混响麦克风阵列结构设计声学结构确认流程紧接上一个博客文章,此为第三部分。上一部分见:麦克风阵列技术二(自动增益控制自动噪声抑制回声消除语音活动检测)麦克风阵列技术详解声源定位麦克风阵列可以自动检测声源位置,跟踪说话人,声源定位信息既可以用于智能交互,也可以用于后续的空域滤波,对目标方向进行语音增强。利用麦
- AliOS Things 声源定位应用演示
xstardust
开发框架与中间件算法函数
摘要:1.概述利用麦克风阵列进行声源定位在智能降噪、语音增强、语音识别等领域有广泛应用和研究前景。本文介绍基于AliOSThings+STM32F413HDiscovery开发板实现声源定位算法集成和功能演示。1.概述利用麦克风阵列进行声源定位在智能降噪、语音增强、语音识别等领域有广泛应用和研究前景。本文介绍基于AliOSThings+STM32F413HDiscovery开发板实现声源定位算法集
- AliOS Things声源定位应用演示
阿里云云栖号
云栖社区算法开发框架与中间件
1.概述利用麦克风阵列进行声源定位在智能降噪、语音增强、语音识别等领域有广泛应用和研究前景。本文介绍基于AliOSThings+STM32F413HDiscovery开发板实现声源定位算法集成和功能演示。声源定位算法本案例集成了STMicroelectronics的Acoustic_SL声源定位算法。Acoustic_SL是STMicroelectronics开发的声源定位算法,支持XCORR、G
- 深度学习音频降噪
mingqian_chu
#音频部分深度学习音视频人工智能
原文出自语音算法组添加链接描述这是AI降噪的第二期,上一期我们介绍了AI降噪的N种数据扩增方法,这一期我们介绍下AI降噪的一些损失函数。降噪,或者语音增强,经过近50年的研究发展,涌现出了很多优秀的降噪算法,从最简单的谱减法,到维纳滤波,再到子空间的方法以及基于统计模型的MMSE估计器,然而传统信号处理的降噪算法在imcra-omlsa出现之后发就展趋于平缓。在2014年中科大的徐博士用DNN直接
- PotPlayer降噪处理和人声增强
CJCChester
音视频
很多本地录屏视频,比如老师网课的录屏,会把电脑自己的声音也录下来,听着很烦躁,下面是我自己用potplayer播放视频时的一些处理。F5打开配置→声音→关闭规格化、晶化→关闭混响,打开降噪,门限自选→语言/同步/其他打开语音增强→均衡器→选择极端降噪(但是声音会变小很多)或者超高音,并打开superEQ均衡2022.12.11补充对极端降噪后,声音变小,有三种处理方式:PotPlayer设置里调节
- 语音增强的算法及应用
渣渣威的仿真秀
算法
语音增强的目的是从带噪语音中提取尽可能纯净的原始语音,主要目标是提高语音质量和可懂度。这一领域的发展历程相当丰富,多年来,学者们一直在努力寻求各种优良的语音增强算法。在近年的研究中,各种语音增强方法不断被提出,如基于小波变换的方法,基于人耳掩蔽效应的方法,基于听觉屏蔽的语音增强算法,基于最小均方误差MMSE-LSA语音增强算法,谱减法等,这些方法奠定了语音增强理论的基础并使之逐渐走向成熟。一、主要
- 深度学习之轻量级神经网络在TWS蓝牙音频处理器上的部署
周南音频科技教育学院(AI湖湘学派)
音频信号处理神经网络算法
加我微信hezkz17进数字音频系统研究开发交流答疑群(课题组)深度学习之轻量级神经网络在TWS蓝牙音频处理器上的部署深度学习之轻量级神经网络在TWS蓝牙音频处理器上的部署深度学习之轻量级神经网络在TWS蓝牙音频处理器上的部署项目一科大讯飞经验在Matlab平台上实现广义旁瓣消除器(GSC),最小方差无失真响应(MVDR)等波束形成算法,同时分析它们的效果在Liu**台上跑通语音增强试试处理框架R
- 【AI视野·今日Sound 声学论文速览 第二十六期】Mon, 16 Oct 2023
hitrjj
SoundaudioPapers人工智能智能声学计算机声学声音生成声音异常检测语言增强
AI视野·今日CS.Sound声学论文速览Mon,16Oct2023Totally7papers上期速览✈更多精彩请移步主页DailySoundPapersLow-latencySpeechEnhancementviaSpeechTokenGenerationAuthorsHuayingXue,XiulianPeng,YanLu现有的基于深度学习的语音增强主要采用数据驱动的方法,利用大量具有各种噪
- 深入剖析iLBC 解码器原理
Audio_Wang
iLBC/iSACSpeechSignalProcessingcodec
继续学习iLBCCodec...一、iLBC解码器的流程如图1是没有丢帧情况下的iLBC解码流程,当解码端收到Payload时,首先从bitstream里面解析出解码所需要的参数。这里的解码参数从LPC开始,然后是重建起始状态,接下来的subframe重建与编码时的顺序一致,通过解码三级形状/增益矢量并且相乘再叠加在一起就得到了重建的残差信号。然后进入语音增强模块,提高语音信号的周期性,最后再经过
- 本周 AI 新闻报道:多个大厂发布了重大更新
天地会珠海分舵
人工智能chatgptOpenAiAdobeFireflyGoogle
AdobeMax大会上,Adobe发布了多项使用AI的新功能。其中最重要的是全新的FireflyImage2图像生成模型,可以生成逼真的人像;Illustrator中的文本到向量图功能,允许通过文字提示生成可编辑的矢量图形;Premiere中推出一键去除填充词的语音增强等功能,这些新功能极大地提升了用户的内容创作效率。Google宣布在搜索结果中推出直接生成图像的功能,用户只需在搜索框中输入文字提
- 基于PSD-ML算法的语音增强算法matlab仿真
简简单单做算法
MATLAB算法开发#视频语音算法matlabPSD-ML语音增强
目录1.算法运行效果图预览2.算法运行软件版本3.部分核心程序4.算法理论概述1.加窗处理:2.分帧处理:3.功率谱密度估计:4.滤波处理:5.逆变换处理:6.合并处理:5.算法完整程序工程1.算法运行效果图预览2.算法运行软件版本matlab2022A3.部分核心程序.................................................................
- Interspeech 2023 | 火山引擎流媒体音频技术之语音增强和AI音频编码
字节跳动技术团队
火山引擎音视频人工智能
背景介绍为了应对处理各类复杂音视频通信场景,如多设备、多人、多噪音场景,流媒体通信技术渐渐成为人们生活中不可或缺的技术。为达到更好的主观体验,使用户听得清、听得真,流媒体音频技术方案融合了传统机器学习和基于AI的语音增强方案,利用深度神经网络技术方案,在语音降噪、回声消除、干扰人声消除和音频编解码等方向,为实时通信中的音频质量保驾护航。作为语音信号处理研究领域的旗舰国际会议,Interspeech
- ICASSP 2023 | 解密实时通话中基于 AI 的一些语音增强技术
字节跳动技术团队
人工智能语音识别计算机视觉深度学习
动手点关注干货不迷路背景介绍实时音视频通信RTC在成为人们生活和工作中不可或缺的基础设施后,其中所涉及的各类技术也在不断演进以应对处理复杂多场景问题,比如音频场景中,如何在多设备、多人、多噪音场景下,为用户提供听得清、听得真的体验。作为RTC方案中不可或缺的技术,语音增强技术正从传统的基于统计学习的方案向基于深度学习的方案融合演进,利用AI技术,可以在语音降噪、回声消除、干扰人声消除等方面实现更
- THUHCSI人机语音交互实验室9篇论文被语音旗舰国际会议INTERSPEECH录用
语音之家
智能语音交互
2023年ISCA国际语音通讯学会年会(2023AnnualConferenceoftheInternationalSpeechCommunicationAssociation,INTERSPEECH2023)将于2023年8月20日-24日在爱尔兰都柏林召开,清华大学人机语音交互实验室(THUHCSI)将在本次会议上发表9篇论文。这些论文涉及语音合成、语音识别、语音增强、语音分离、视频配音等多个
- AliCloudDenoise 语音增强算法,助力实时会议系统进入超清音质时代
简介:近些年,随着实时通信技术的发展,在线会议逐渐成为人们工作中不可或缺的重要办公工具,据不完全统计,线上会议中约有75%为纯语音会议,即无需开启摄像头和屏幕共享功能,此时会议中的语音质量和清晰度对线上会议的体验便至关重要。作者|七琦审校|泰一前言在现实生活中,会议所处的环境是极具多样性的,包括开阔的嘈杂环境、瞬时非平稳的键盘敲击声音等,这些对传统的基于信号处理的语音前端增强算法提出了很大的挑战。
- 我去,这是什么黑科技!用信号处理方法抑制瞬态噪声
语音之家
智能语音科技信号处理
对于语音增强来说,噪声一般可以分为稳态噪声(如白噪声)和瞬态噪声(有的地方也叫非稳态噪声,如键盘声)。如果对语音降噪有一定了解的读者会知道,一般的信号处理方法对稳态噪声比较有效,可以参考WebRTCANR流程解析,然而对于瞬态噪声,由于噪声变换较快,噪声估计算法没办法准确跟踪到噪声的变化,因此一般采用基于深度学习的方法对瞬态噪声进行抑制,可以参考DNN单通道语音增强。但是,有没有可能使用信号处理来
- K210开发实例-I2S播放音频
视觉&物联智能
物联网全栈开发实战单片机嵌入式硬件物联网K210边缘计算
I2S播放音频I2S播放音频1、I2S介绍2、I2S驱动API介绍3、I2S播放PCM数据3.1直接播放生成的Sine波形数据3.2使用DMA传输音频数据1、I2S介绍K210内置音频总线共有3个(I²S0、I²S1、I²S2),都是MASTER模式。其中I²S0支持可配置连接语音处理模块,实现语音增强和声源定向的功能。下面是一些共有的特性:总线宽度可配置为8,16,和32位每个接口最多支持4个立
- 《SEGAN: Speech Enhancement Generative Adversarial Network》论文阅读
qq_46079584
音视频其他
本文的作者是SantiagoPascual,AntonioBonafonte,JoanSerra。研究动机目前语音增强的技术都是用在频谱域上或者高维特征上,这样的话,大多数的音频处理会受到噪声环境数量的限制并且依赖一阶统计特征。为了解决这些问题,深度网络是可以从大型的数据集上学习到复杂的映射。本论文中,提出了增强GAN网络,名叫SEGAN,它是直接用时域的波形当作输入送入到网络当中去的,在看不见的
- 设计一款数字助听器可能需要用到以下音频算法
周龙(AI湖湘学派)
音视频
设计一款助听器可能需要用到以下音频算法:1响度补偿算法:助听器可能需要根据用户的听力损失情况调整不同频率范围内的增益,以提供个性化的听力补偿。这可以通过基于用户配置或自适应算法的频率响应调整来实现。2噪声抑制:用于减少环境中的噪声干扰,使用户能够更清晰地听到所需的声音。3压缩扩展:使用动态范围压缩和扩展技术,使较弱的声音更易于听到,同时限制过高音量的出现。4麦克风阵列方向性处理:语音增强算法,利用
- 【强烈推荐】 十多款2023年必备国内外王炸级AI工具 (免费 精品 好用) 让你秒变神一样的装逼佬感受10倍生产力 (2) AI修音
极客小俊
AI人工智能人工智能AI修音算法工具推荐声音处理
个人主页极客小俊✍作者简介:web开发者、设计师、技术分享博主希望大家多多支持一下,我们一起进步!如果文章对你有帮助的话,欢迎评论点赞收藏加关注AI声音处理(修音)⭐AI人工智能不仅可以处理图片,声音都可以处理,真的是太强了!随着人工智能技术的不断发展,声音处理已经成为了AI领域的一个重要应用之一!那么接下来这里就推荐我经常使用的AI在线免费修音工具吧!AdobeAI语音增强(音频降噪在线处理工具
- Python语音增强
YEGE学AI算法
语音处理python开发语言
简介音频时域波形具有以下特征:音调,响度,质量。我们在进行数据增强时,最好只做一些小改动,使得增强数据和源数据存在较小差异即可,切记不能改变原有数据的结构,不然将产生“脏数据”,通过对音频数据进行数据增强,能有助于我们的模型避免过度拟合并变得更加通用。经过实验发现对声波的以下改变是有用的:Noiseaddition(增加噪音)、Addreverb(增加混响)、Timeshifting(时移)、Pi
- 智能语音信息处理团队18篇论文被语音技术顶会ICASSP 2023接收
语音之家
智能语音人工智能深度学习语音识别
近日,ICASSP2023会议发出了审稿结果通知,语音及语言信息处理国家工程研究中心智能语音信息处理团队共18篇论文被会议接收,论文方向涵盖语音识别、语音合成、话者识别、语音增强、情感识别、声音事件检测等,各接收论文简介见后文。来源丨语音及语言国家工程研究中心语音及语言信息处理国家工程实验室于2011年由国家发改委正式批准成立,由中国科学技术大学和科大讯飞股份有限公司联合共建,是我国语音产业界唯一
- WebRTC音频系统 之audio技术栈简介-1
shichaog
webrtc导读webrtc
文章目录第一章WebRTC技术栈简介1.1视频会议中常见的服务端架构1.2WebRTC网络协议栈1.3WebRTC源码目录结构1.4client侧技术栈1.5WebRTCnative编译以及debug1.6APM模块1.7ADM模块WebRTC是Google开源的Web实时音视频通信框架,其提供P2P的音频、视频和一般数据传输协议栈的支持,其音频主要包括:采集播放、众多音频编解码器、语音增强、回声
- 语音识别框架之ESPnet
语音不识别
语音识别语音识别人工智能linux
ESPnet是一个端到端的语音处理工具包,涵盖了端到端的语音识别、文本到语音、语音翻译、语音增强、说话者分类、口语理解等。ESPnet使用pytorch作为深度学习引擎,还遵循Kaldi风格的数据处理、特征提取/格式和配方,为各种语音处理实验提供完整的设置。github直通车克隆gitclonehttps://github.com/espnet/espnet官网文档安装ESPnet使用官网安装的过
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f