第十届蓝桥杯JavaB组省赛真题

试题 A: 组队
本题总分:5 分
【问题描述】
作为篮球队教练,你需要从以下名单中选出 1 号位至 5 号位各一名球员, 组成球队的首发阵容。 每位球员担任 1 号位至 5 号位时的评分如下表所示。请你计算首发阵容 1 号位至 5 号位的评分之和最大可能是多少?

第十届蓝桥杯JavaB组省赛真题_第1张图片

这个真的没什么好说的,第一题基本上都是水题

试题 B: 不同子串
本题总分:5 分
【问题描述】
一个字符串的非空子串是指字符串中长度至少为 1 的连续的一段字符组成 的串。例如,字符串aaab 有非空子串a, b, aa, ab, aaa, aab, aaab,一共 7 个。 注意在计算时,只算本质不同的串的个数。 请问,字符串0100110001010001 有多少个不同的非空子串?
【答案提交】
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一 个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。

package JavaB;

import java.util.HashSet;
import java.util.Set;
//审题发现要求是不同的非空子串,则想到Set集合去重,
//String.substring()方法求子串(一切	为快速解题为前提)
//for循环每一种可能

public class butongzichuan {
	public static void main(String[] args) {
		String s ="0100110001010001";
		Set set = new HashSet();
		for (int i = 0; i < s.length(); i++) {
			for (int j = i+1; j <= s.length(); j++) {
				String a = s.substring(i,j);
				set.add(a);
			}
		}
		System.out.println(set.size());
	}
}

试题 C: 数列求值
本题总分:10 分
【问题描述】
给定数列 1, 1, 1, 3, 5, 9, 17, …,从第 4 项开始,每项都是前 3 项的和。求 第 20190324 项的最后 4 位数字。
【答案提交】
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一 个 4 位整数(提示:答案的千位不为 0),在提交答案时只填写这个整数,填写 多余的内容将无法得分。

package JavaB;

public class shulieqiuzhi {
//此题类似于斐波那契数列,但是所求20190324项的最后四位数字,要是单纯按照斐波那契数列的
//思想求下去,别说long类型,BigInteger类型都存不了这么大的数,然后我们发现,所求
//20190324项的最后四位数字(也就是变相的告诉我们运算过程只和每个数的后四位有关系),那	
	public static void main(String[] args) {
		int a = 1, b = 1, c = 1;
		// 要是求第四项,则i < 4, 同理推得求20190324,则i < 20190324。
		for (int i = 3; i < 20190324; i++) {
			int temp = (a + b + c) % 10000;
			a = b;
			b = c;
			c = temp;
		}
		System.out.println(c);
	}
}

试题 D: 数的分解
本题总分:10 分
【问题描述】
把 2019 分解成 3 个各不相同的正整数之和,并且要求每个正整数都不包 含数字 2 和 4,一共有多少种不同的分解方法? 注意交换 3 个整数的顺序被视为同一种方法,例如 1000+1001+18 和 1001+1000+18 被视为同一种。
【答案提交】
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一 个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。

package JavaB;

public class shudefenjie {
//首先我们分析组成2019的三个数有哪几类?1.ABC类排列方式为六种(ABC,ACB,BAC,BCA,
//CAB,CBA),2.AAB类排列方式有三种(AAB,ABA,BAA),3.AAA类排列方式一种。而题目要
//求把 2019 分解成 3 个各不相同的正整数之和也就是说只保留ABC类的组合方式,j = i + 1,	
	public static void main(String[] args) {
		int n = 2019;
		int num = 0;
		for (int i = 1; i < n; i++) {
			if ((i + "").indexOf("2") != -1 || (i + "").indexOf("4") != -1)
				continue;
			for (int j = i + 1; j < n; j++) {
				if ((j + "").indexOf("2") != -1 || (j + "").indexOf("4") != -1)
					continue;
				int k = n - i - j;
				if (i == k || j == k || i == j)
					continue;
				if (k > 0 && (k + "").indexOf("2") == -1 && (k + "").indexOf("4") == -1)
					num++;
			}
		}
		System.out.println(num / 3);
	}

}

试题 E: 迷宫
本题总分:15 分
【问题描述】
下图给出了一个迷宫的平面图,其中标记为 1 的为障碍,标记为 0 的为可 以通行的地方。
010000 000100 001001 110000
迷宫的入口为左上角,出口为右下角,在迷宫中,只能从一个位置走到这 个它的上、下、左、右四个方向之一。 对于上面的迷宫,从入口开始,可以按DRRURRDDDR 的顺序通过迷宫, 一共 10 步。其中 D、U、L、R 分别表示向下、向上、向左、向右走。 对于下面这个更复杂的迷宫(30 行 50 列),请找出一种通过迷宫的方式, 其使用的步数最少,在步数最少的前提下,请找出字典序最小的一个作为答案。 请注意在字典序中D 01010101001011001001010110010110100100001000101010 00001000100000101010010000100000001001100110100101 01111011010010001000001101001011100011000000010000 01000000001010100011010000101000001010101011001011 00011111000000101000010010100010100000101100000000 11001000110101000010101100011010011010101011110111 00011011010101001001001010000001000101001110000000
10100000101000100110101010111110011000010000111010 00111000001010100001100010000001000101001100001001 11000110100001110010001001010101010101010001101000 00010000100100000101001010101110100010101010000101 11100100101001001000010000010101010100100100010100 00000010000000101011001111010001100000101010100011 10101010011100001000011000010110011110110100001000 10101010100001101010100101000010100000111011101001 10000000101100010000101100101101001011100000000100 10101001000000010100100001000100000100011110101001 00101001010101101001010100011010101101110000110101 11001010000100001100000010100101000001000111000010 00001000110000110101101000000100101001001000011101 10100101000101000000001110110010110101101010100001 00101000010000110101010000100010001001000100010101 10100001000110010001000010101001010101011111010010 00000100101000000110010100101001000001000000000010 11010000001001110111001001000011101001011011101000 00000110100010001000100000001000011101000000110011 10101000101000100010001111100010101001010000001000 10000010100101001010110000000100101010001011101000 00111100001000010000000110111000000001000000001011 10000001100111010111010001000110111010101101111000
【答案提交】
这是一道结果填空的题,你只需要算出结果后提交即可。本题的结果为一 个字符串,包含四种字母 D、U、L、R,在提交答案时只填写这个字符串,填 写多余的内容将无法得分。

package JavaB;

import java.util.LinkedList;
import java.util.Queue;
import java.util.Scanner;
import java.util.Stack;

public class migong {
	public static void main(String[] args) {
		Scanner input = new Scanner(System.in);
		try {
			String s = "01010101001011001001010110010110100100001000101010"
					+ "00001000100000101010010000100000001001100110100101"
					+ "01111011010010001000001101001011100011000000010000"
					+ "01000000001010100011010000101000001010101011001011"
					+ "00011111000000101000010010100010100000101100000000"
					+ "11001000110101000010101100011010011010101011110111"
					+ "00011011010101001001001010000001000101001110000000"
					+ "10100000101000100110101010111110011000010000111010"
					+ "00111000001010100001100010000001000101001100001001"
					+ "11000110100001110010001001010101010101010001101000"
					+ "00010000100100000101001010101110100010101010000101"
					+ "11100100101001001000010000010101010100100100010100"
					+ "00000010000000101011001111010001100000101010100011"
					+ "10101010011100001000011000010110011110110100001000"
					+ "10101010100001101010100101000010100000111011101001"
					+ "10000000101100010000101100101101001011100000000100"
					+ "10101001000000010100100001000100000100011110101001"
					+ "00101001010101101001010100011010101101110000110101"
					+ "11001010000100001100000010100101000001000111000010"
					+ "00001000110000110101101000000100101001001000011101"
					+ "10100101000101000000001110110010110101101010100001"
					+ "00101000010000110101010000100010001001000100010101"
					+ "10100001000110010001000010101001010101011111010010"
					+ "00000100101000000110010100101001000001000000000010"
					+ "11010000001001110111001001000011101001011011101000"
					+ "00000110100010001000100000001000011101000000110011"
					+ "10101000101000100010001111100010101001010000001000"
					+ "10000010100101001010110000000100101010001011101000"
					+ "00111100001000010000000110111000000001000000001011"
					+ "10000001100111010111010001000110111010101101111000";
			int[][] labyrinth = new int[30][50];
			for (int i = 0; i < 30; i++) {
				for (int j = 0; j < 50; j++) {
					labyrinth[i][j] = s.charAt(50 * i + j) - '0';
				}
			}
			System.out.println(BFS(labyrinth, 30, 50));
		} catch (Exception e) {
			input.close();
		}
	}

	public static String BFS(int[][] labyrinth, int row, int column) {
		int[][] stepArr = { { -1, 0 }, { 0, 1 }, { 0, -1 }, { 1, 0 } };
		String[] direction = { "U", "R", "L","D"}; 
		int[][] visit = new int[row][column];// 标记是否已经访问过
		StringBuilder sb = new StringBuilder();
		Node node = new Node(0, 0, -1, -1, 0, null);
		Queue queue = new LinkedList();
		Stack stack = new Stack();
		queue.offer(node);
		while (!queue.isEmpty()) {
			Node head = queue.poll();
			stack.push(head); // 用于回溯路径
			visit[head.x][head.y] = 1;
			for (int i = 0; i < 4; i++) {
				int x = head.x + stepArr[i][0];
				int y = head.y + stepArr[i][1];
				String d = direction[i];
				// exit
				if (x == row - 1 && y == column - 1 && labyrinth[x][y] == 0 && visit[x][y] == 0) {
					// 打印路径
					Node top = stack.pop();
					sb.append(d);
					sb.append(top.direction);
					int preX = top.preX;
					int preY = top.preY;
					while (!stack.isEmpty()) {
						top = stack.pop();
						if (preX == top.x && preY == top.y) {
							if (top.direction != null)
								sb.append(top.direction);
							preX = top.preX;
							preY = top.preY;
						}

					}
					return sb.reverse().toString();
				}
				// bfs
				if (x >= 0 && x < row && y >= 0 && y < column && labyrinth[x][y] == 0 && visit[x][y] == 0) {
					Node newNode = new Node(x, y, head.x, head.y, head.step + 1, d);
					queue.offer(newNode);
				}
			}
		}
		return null;
	}
}

class Node {
	int x, y;
	int step;
	int preX, preY;
	String direction;

	Node(int x, int y, int preX, int preY, int step, String direction) {
		this.x = x;
		this.y = y;
		this.preX = preX;
		this.preY = preY;
		this.step = step;
		this.direction = direction;
	}

}

试题 F: 特别数的和
时间限制: 1.0s 内存限制: 512.0MB 本题总分:15 分
【问题描述】
小明对数位中含有 2、0、1、9 的数字很感兴趣(不包括前导 0),在 1 到 40 中这样的数包括 1、2、9、10 至 32、39 和 40,共 28 个,他们的和是 574。 请问,在 1 到 n 中,所有这样的数的和是多少?
【输入格式】
输入一行包含两个整数 n。
【输出格式】
输出一行,包含一个整数,表示满足条件的数的和。
【样例输入】 40
【样例输出】 574
【评测用例规模与约定】 对于 20% 的评测用例,1≤n≤10。 对于 50% 的评测用例,1≤n≤100。 对于 80% 的评测用例,1≤n≤1000。 对于所有评测用例,1≤n≤10000。

package JavaB;

import java.util.Scanner;

public class tebieshudehe {
	public static void main(String[] args) {
		Scanner sc= new Scanner(System.in);
		int n =sc.nextInt();
		int count=0;int sum = 0;
		for (int i = 1; i <=n; i++) {
			int b = i;
			while(b!=0){
				int a = b%10;
				if(a==2 || a==0||a==1||a==9){
					count++;
					sum+=i;
					break;
				}
			b/=10;
			}
		}
		System.out.println(sum);
	}

}

试题 G: 外卖店优先级
时间限制: 1.0s 内存限制: 512.0MB 本题总分:20 分
【问题描述】
“饱了么”外卖系统中维护着 N 家外卖店,编号 1 ∼ N。每家外卖店都有 一个优先级,初始时 (0 时刻) 优先级都为 0。 每经过 1 个时间单位,如果外卖店没有订单,则优先级会减少 1,最低减 到 0;而如果外卖店有订单,则优先级不减反加,每有一单优先级加 2。 如果某家外卖店某时刻优先级大于 5,则会被系统加入优先缓存中;如果 优先级小于等于 3,则会被清除出优先缓存。 给定 T 时刻以内的 M 条订单信息,请你计算 T 时刻时有多少外卖店在优 先缓存中。
【输入格式】 第一行包含 3 个整数 N、M 和 T。 以下 M 行每行包含两个整数 ts 和 id,表示 ts 时刻编号 id 的外卖店收到 一个订单。
【输出格式】
输出一个整数代表答案。
【样例输入】 2 6 6 1 1 5 2 3 1 6 2 2 1 6 2

【样例输出】 1
【样例解释】 6 时刻时,1 号店优先级降到 3,被移除出优先缓存;2 号店优先级升到 6, 加入优先缓存。所以是有 1 家店 (2 号) 在优先缓存中。
【评测用例规模与约定】 对于 80% 的评测用例,1≤ N,M,T ≤10000。 对于所有评测用例,1≤ N,M,T ≤100000,1≤ts≤T,1≤id ≤ N。
这道题可以看一下我的另一篇可能比较详细
第十届蓝桥杯JavaC组省赛真题
https://blog.csdn.net/a1439775520/article/details/90755868

package JavaB;

import java.util.ArrayList;
import java.util.Map;
import java.util.Map.Entry;
import java.util.Scanner;
import java.util.TreeMap;

public class waimaidianyouxianji {
	static Scanner in = new Scanner(System.in);
	static int n, m, t;
	static Map> map = new TreeMap>();
	static int result;

	public static void main(String[] args) {
		n = in.nextInt();
		m = in.nextInt();
		t = in.nextInt();
		for (int i = 1; i <= m; ++i) {
			int time = in.nextInt();
			int id = in.nextInt();
			if (map.containsKey(id)) {
				map.get(id).add(time);
			} else {
				ArrayList temp = new ArrayList();
				temp.add(time);
				map.put(id, temp);
			}
		}

		ArrayList>> list = new ArrayList>>(
				map.entrySet());
		for (int i = 0; i < list.size(); ++i) {
			Entry> entry = list.get(i);
			ArrayList list2 = entry.getValue();
			int num = 0;
			int[] count = new int[t + 2];
			boolean flag = false;
			for (int j = 0; j < list2.size(); ++j)
				count[list2.get(j)]++;

			for (int j = 1; j <= t; ++j) {
				if (count[j] == 0) {
					if (num > 0)
						num--;
					if (num <= 3)
						flag = false;
				} else {
					num += count[j] * 2;
					if (num > 5)
						flag = true;
				}
			}
			if (flag)
				result++;
		}
		System.out.println(result);
	}

}

试题 H: 人物相关性分析

时间限制: 1.0s 内存限制: 512.0MB 本题总分:20 分
【问题描述】
小明正在分析一本小说中的人物相关性。他想知道在小说中 Alice 和 Bob 有多少次同时出现。 更准确的说,小明定义 Alice 和 Bob“同时出现”的意思是:在小说文本 中 Alice 和 Bob 之间不超过 K 个字符。 例如以下文本: ThisisastoryaboutAliceandBob.AlicewantstosendaprivatemessagetoBob. 假设 K = 20,则 Alice 和 Bob 同时出现了 2 次,分别是”Alice and Bob” 和”Bob. Alice”。前者 Alice 和 Bob 之间有 5 个字符,后者有 2 个字符。 注意: 1. Alice 和 Bob 是大小写敏感的,alice 或 bob 等并不计算在内。 2. Alice 和 Bob 应为单独的单词,前后可以有标点符号和空格,但是不能 有字母。例如 Bobbi 並不算出现了 Bob。
【输入格式】
第一行包含一个整数 K。 第二行包含一行字符串,只包含大小写字母、标点符号和空格。长度不超 过 1000000。
【输出格式】 输出一个整数,表示 Alice 和 Bob 同时出现的次数。
【样例输入】 20 ThisisastoryaboutAliceandBob.AlicewantstosendaprivatemessagetoBob.
【样例输出】 2
【评测用例规模与约定】 对于所有评测用例,1≤ K ≤1000000。

这道题可以看一下我的另一篇可能比较详细
第十届蓝桥杯JavaC组省赛真题
https://blog.csdn.net/a1439775520/article/details/90755868

package JavaB;

import java.util.Scanner;

public class renwuxiangguanxing {
	 public static void main(String[] args)  {
	        Scanner reader=new Scanner(System.in);
	        int res=0;    //save result
	        int K=reader.nextInt();
	        reader.nextLine();    //nextLine吸取回车键
	        String str=reader.nextLine();
	        String words[]=str.split("\\s+|\\.");    //以空格和.分割出来,注意.空格的组合存放为空字符串
	        
	        //    Alice------>Bob
	        for(int i=0;iAlice
	        for(int i=0;i

试题 I: 后缀表达式
时间限制: 1.0s 内存限制: 512.0MB 本题总分:25 分
【问题描述】
给定 N 个加号、M 个减号以及 N + M + 1 个整数 A1,A2,··· ,AN+M+1,小 明想知道在所有由这 N 个加号、M 个减号以及 N + M +1 个整数凑出的合法的 后缀表达式中,结果最大的是哪一个?
请你输出这个最大的结果。 例如使用1 2 3 + -,则 “2 3 + 1 -” 这个后缀表达式结果是 4,是最大的。
【输入格式】
第一行包含两个整数 N 和 M。 第二行包含 N + M + 1 个整数 A1,A2,··· ,AN+M+1。
【输出格式】
输出一个整数,代表答案。
【样例输入】 1 1 1 2 3
【样例输出】 4
【评测用例规模与约定】 对于所有评测用例,0≤ N,M ≤100000,−109 ≤ Ai ≤109。

不会,希望会的大佬能告诉我一下怎么写

试题 J: 灵能传输
时间限制: 5.0s 内存限制: 512.0MB 本题总分:25 分
【题目背景】
在游戏《星际争霸 II》中,高阶圣堂武士作为星灵的重要 AOE 单位,在 游戏的中后期发挥着重要的作用,其技能”灵能风暴“可以消耗大量的灵能对 一片区域内的敌军造成毁灭性的伤害。经常用于对抗人类的生化部队和虫族的 刺蛇飞龙等低血量单位。
【问题描述】
你控制着 n 名高阶圣堂武士,方便起见标为 1,2,··· ,n。每名高阶圣堂武士 需要一定的灵能来战斗,每个人有一个灵能值 ai 表示其拥有的灵能的多少(ai 非负表示这名高阶圣堂武士比在最佳状态下多余了 ai 点灵能,ai 为负则表示这 名高阶圣堂武士还需要 −ai 点灵能才能到达最佳战斗状态)。现在系统赋予了 你的高阶圣堂武士一个能力,传递灵能,每次你可以选择一个 i ∈ [2,n−1],若 ai ≥ 0 则其两旁的高阶圣堂武士,也就是 i−1、i + 1 这两名高阶圣堂武士会从 i 这名高阶圣堂武士这里各抽取 ai 点灵能;若 ai < 0 则其两旁的高阶圣堂武士, 也就是 i−1,i+1 这两名高阶圣堂武士会给 i 这名高阶圣堂武士 −ai 点灵能。形 式化来讲就是 ai−1+ = ai,ai+1+ = ai,ai−= 2ai。 灵能是非常高效的作战工具,同时也非常危险且不稳定,一位高阶圣堂 武士拥有的灵能过多或者过少都不好,定义一组高阶圣堂武士的不稳定度为 maxn i=1|ai|,请你通过不限次数的传递灵能操作使得你控制的这一组高阶圣堂武 士的不稳定度最小。
【输入格式】
本题包含多组询问。输入的第一行包含一个正整数 T 表示询问组数。 接下来依次输入每一组询问。 每组询问的第一行包含一个正整数 n,表示高阶圣堂武士的数量。 接下来一行包含 n 个数 a1,a2,··· ,an。
【输出格式】
输出 T 行。每行一个整数依次表示每组询问的答案。
【样例输入】 3 3 5 -2 3 4 0 0 0 0 3 1 2 3
【样例输出】 3 0 3
【样例说明】
对于第一组询问: 对 2 号高阶圣堂武士进行传输操作后 a1 = 3,a2 = 2,a3 = 1。答案为 3。 对于第二组询问:
这一组高阶圣堂武士拥有的灵能都正好可以让他们达到最佳战斗状态。

不会,希望会的大佬能告诉我一下怎么写

你可能感兴趣的:(蓝桥杯,#,蓝桥杯历届真题,蓝桥杯历届真题)