最近在打基础,大致都和向量有关,从比较基础的人工智能常用算法开始,以下是对BP算法研究的一个小节。
本文只是自我思路的整理,其中举了个例子,已经对一些难懂的地方做了解释,有兴趣恰好学到人工智能对这块不能深入理解的,可以参考本文。
通过带*的权重值重新计算误差,发现误差为0.18,比老误差0.19小,则继续迭代,得神经元的计算结果更加逼近目标值0.5
感想
在一个复杂样本空间下,对输入和输出进行拟合
(1) 多少个hidden unit才能符合需要(hidden unit就是图中的P,Q)
(2) 多少层unit才能符合需要(本例为1层)
(3) 如果有n层,每层m个unit,k个输入,1个输出,那么就有K*m^(n+1)条边,每条边有一个权重值,这个计算量非常巨大
(4) 如果k个输入,1个输出,相当于将k维空间,投射到一个1维空间,是否可以提供足够的准确性,如果是k个输入,j个输出,j比k大,是否是一个升维的过程,是否有价值?
收获
1) 了解偏导。
2) 了解梯度。
3) 产生新的思考
参考文献:
1 http://en.wikipedia.org/wiki/Linear_least_squares_(mathematics)
2 http://www.rgu.ac.uk/files/chapter3%20-%20bp.pdf
3 http://www.cedar.buffalo.edu/~srihari/CSE574/Chap5/Chap5.3-BackProp.pdf
验证代码:
#include "stdio.h"
#include
const double e = 2.7182818;
int main(void)
{
double input[] = {0.35,0.9};
double matrix_1[2][2]={
{0.1,0.4},
{0.8,0.6},
};
double matrix_2[] = { 0.3,0.9 };
for(int s= 0; s<1000; ++s)
{
double tmp[] = {0.0,0.0};
double value = 0.0;
{
for(int i = 0;i<2;++i)
{
for(int j = 0;j<2;++j)
{
tmp[i] += input[j]*matrix_1[j][i];
}
tmp[i] = 1/(1+pow(e,-1*tmp[i]));
}
for(int i = 0;i<2;++i)
{
value += tmp[i]*matrix_2[i];
}
value = 1/(1+pow(e,-1*value));
}
double RMSS = (0.5)*( value - 0.5)*(value-0.5);
printf("%f,%f\n",value,RMSS);
if(value - 0.5 < 0.01)
{
break;
}
double E = value - 0.5;
matrix_2[0] = matrix_2[0] - E*value*(1-value)*tmp[0];
matrix_2[1] = matrix_2[1] - E*value*(1-value)*tmp[1];
//printf("##%f,%f\n",matrix_2[0],matrix_2[1]);
matrix_1[0][0] = matrix_1[0][0] - E*value*(1-value)*matrix_2[0]*tmp[0]*(1-tmp[0])*matrix_1[0][0];
matrix_1[1][0] = matrix_1[1][0] - E*value*(1-value)*matrix_2[0]*tmp[0]*(1-tmp[0])*matrix_1[1][0];
matrix_1[0][1] = matrix_1[0][1] - E*value*(1-value)*matrix_2[0]*tmp[0]*(1-tmp[1])*matrix_1[0][1];
matrix_1[1][1] = matrix_1[1][1] - E*value*(1-value)*matrix_2[0]*tmp[0]*(1-tmp[1])*matrix_1[1][1];
//printf("##%f,%f\n",matrix_1[0][0],matrix_1[1][0]);
//printf("##%f,%f\n",matrix_1[0][1],matrix_1[1][1]);
}
return 0;
}
给出一个带有”增加充量项“BPANN。
有两个输入单元,两个隐藏单元,一个输出单元,三层
# Back-Propagation Neural Networks
#
import math
import random
import string
random.seed(0)
# calculate a random number where: a <= rand < b
def rand(a, b):
return (b-a)*random.random() + a
# Make a matrix (we could use NumPy to speed this up)
def makeMatrix(I, J, fill=0.0):
m = []
for i in range(I):
m.append([fill]*J)
return m
# our sigmoid function, tanh is a little nicer than the standard 1/(1+e^-x)
#使用双正切函数代替logistic函数
def sigmoid(x):
return math.tanh(x)
# derivative of our sigmoid function, in terms of the output (i.e. y)
# 双正切函数的导数,在求取输出层和隐藏侧的误差项的时候会用到
def dsigmoid(y):
return 1.0 - y**2
class NN:
def __init__(self, ni, nh, no):
# number of input, hidden, and output nodes
# 输入层,隐藏层,输出层的数量,三层网络
self.ni = ni + 1 # +1 for bias node
self.nh = nh
self.no = no
# activations for nodes
self.ai = [1.0]*self.ni
self.ah = [1.0]*self.nh
self.ao = [1.0]*self.no
# create weights
#生成权重矩阵,每一个输入层节点和隐藏层节点都连接
#每一个隐藏层节点和输出层节点链接
#大小:self.ni*self.nh
self.wi = makeMatrix(self.ni, self.nh)
#大小:self.ni*self.nh
self.wo = makeMatrix(self.nh, self.no)
# set them to random vaules
#生成权重,在-0.2-0.2之间
for i in range(self.ni):
for j in range(self.nh):
self.wi[i][j] = rand(-0.2, 0.2)
for j in range(self.nh):
for k in range(self.no):
self.wo[j][k] = rand(-2.0, 2.0)
# last change in weights for momentum
#?
self.ci = makeMatrix(self.ni, self.nh)
self.co = makeMatrix(self.nh, self.no)
def update(self, inputs):
if len(inputs) != self.ni-1:
raise ValueError('wrong number of inputs')
# input activations
# 输入的激活函数,就是y=x;
for i in range(self.ni-1):
#self.ai[i] = sigmoid(inputs[i])
self.ai[i] = inputs[i]
# hidden activations
#隐藏层的激活函数,求和然后使用压缩函数
for j in range(self.nh):
sum = 0.0
for i in range(self.ni):
#sum就是《ml》书中的net
sum = sum + self.ai[i] * self.wi[i][j]
self.ah[j] = sigmoid(sum)
# output activations
#输出的激活函数
for k in range(self.no):
sum = 0.0
for j in range(self.nh):
sum = sum + self.ah[j] * self.wo[j][k]
self.ao[k] = sigmoid(sum)
return self.ao[:]
#反向传播算法 targets是样本的正确的输出
def backPropagate(self, targets, N, M):
if len(targets) != self.no:
raise ValueError('wrong number of target values')
# calculate error terms for output
#计算输出层的误差项
output_deltas = [0.0] * self.no
for k in range(self.no):
#计算k-o
error = targets[k]-self.ao[k]
#计算书中公式4.14
output_deltas[k] = dsigmoid(self.ao[k]) * error
# calculate error terms for hidden
#计算隐藏层的误差项,使用《ml》书中的公式4.15
hidden_deltas = [0.0] * self.nh
for j in range(self.nh):
error = 0.0
for k in range(self.no):
error = error + output_deltas[k]*self.wo[j][k]
hidden_deltas[j] = dsigmoid(self.ah[j]) * error
# update output weights
# 更新输出层的权重参数
# 这里可以看出,本例使用的是带有“增加冲量项”的BPANN
# 其中,N为学习速率 M为充量项的参数 self.co为冲量项
# N: learning rate
# M: momentum factor
for j in range(self.nh):
for k in range(self.no):
change = output_deltas[k]*self.ah[j]
self.wo[j][k] = self.wo[j][k] + N*change + M*self.co[j][k]
self.co[j][k] = change
#print N*change, M*self.co[j][k]
# update input weights
#更新输入项的权重参数
for i in range(self.ni):
for j in range(self.nh):
change = hidden_deltas[j]*self.ai[i]
self.wi[i][j] = self.wi[i][j] + N*change + M*self.ci[i][j]
self.ci[i][j] = change
# calculate error
#计算E(w)
error = 0.0
for k in range(len(targets)):
error = error + 0.5*(targets[k]-self.ao[k])**2
return error
#测试函数,用于测试训练效果
def test(self, patterns):
for p in patterns:
print(p[0], '->', self.update(p[0]))
def weights(self):
print('Input weights:')
for i in range(self.ni):
print(self.wi[i])
print()
print('Output weights:')
for j in range(self.nh):
print(self.wo[j])
def train(self, patterns, iterations=1000, N=0.5, M=0.1):
# N: learning rate
# M: momentum factor
for i in range(iterations):
error = 0.0
for p in patterns:
inputs = p[0]
targets = p[1]
self.update(inputs)
error = error + self.backPropagate(targets, N, M)
if i % 100 == 0:
print('error %-.5f' % error)
def demo():
# Teach network XOR function
pat = [
[[0,0], [0]],
[[0,1], [1]],
[[1,0], [1]],
[[1,1], [0]]
]
# create a network with two input, two hidden, and one output nodes
n = NN(2, 2, 1)
# train it with some patterns
n.train(pat)
# test it
n.test(pat)
if __name__ == '__main__':
demo()