- 数学建模与优化算法在确定X和Y值时,如何处理实验数据的不确定性?
学术乙方
油纸绝缘算法经验分享
在数学建模与优化算法中处理实验数据的不确定性以确定油纸绝缘系统中的X和Y值,可以参考以下方法和步骤:建立数学模型油纸绝缘系统的几何结构可以用X-Y模型来描述,其中X表示挡板厚度与总厚度的比值,Y表示间隔器宽度与总宽度的比值。这些参数直接影响油纸绝缘的介电特性。通过实验数据(如介电谱曲线)和理论模型,可以建立数学方程来描述X和Y对介电特性的影响。引入不确定性建模实验数据通常存在测量误差、环境变化等因
- AI浪潮下的数据保卫战:SSL证书为何成为企业刚需?
ssl证书
随着人工智能(AI)技术的迅猛发展,数据已成为企业最核心的资产之一。无论是训练AI模型、优化算法,还是提供个性化服务,数据的安全性和隐私保护都至关重要。然而,AI的广泛应用也带来了前所未有的安全挑战,尤其是在数据传输和存储过程中,如何防止数据泄露、篡改和窃取成为企业必须面对的问题。在这样的背景下,SSL证书作为网络安全的基础设施,正逐渐成为企业的“刚需”。1.AI时代的数据安全挑战数据量激增:AI
- 1.3 最优化的基本概念
西瓜毛毛猫
最优化算法
系统分类一般来说,最优化算法研究可以分为:构造最优化模型、确定最优化问题的类型与设计算法、实现算法或调用优化算法软件包进行求解。最优化模型的构造与实际问题息息相关。打个比方,给定二维欧几里得空间的若干个分离点,假定它们可以通过一条直线分成两部分,也可以通过一条曲线分成两部分。那么分别使用直线和曲线所得到的最优化模型是不同的。在前文的问题中,目标函数与约束函数都是由模型来决定的。在确定模型后,我们再
- Day60 图论part10
2401_83448199
图论
今天大家会感受到Bellman_ford算法系列在不同场景下的应用。建议依然是:一刷的时候,能理解原理,知道Bellman_ford解决不同场景的问题,照着代码随想录能抄下来代码就好,就算达标。二刷的时候自己尝试独立去写,三刷的时候才能有一定深度理解各个最短路算法。Bellman_ford队列优化算法(又名SPFA)代码随想录importjava.util.*;publicclassMain{pu
- 【无人机三维路径规划】基于蛾群算法MSA实现复杂城市地形下无人机避障三维航迹规划
天天科研工作室
无人机路径规划无人机无人机三维路径规划MATLABMSA
【无人机三维路径规划】基于蛾群算法MSA实现复杂城市地形下无人机避障三维航迹规划文章目录【无人机三维路径规划】基于蛾群算法MSA实现复杂城市地形下无人机避障三维航迹规划文章介绍优势基本步骤辅助函数代码分享参考资料文章介绍基于蛾群算法(MothSwarmAlgorithm,MSA)实现复杂城市地形下无人机避障三维航迹规划是指利用蛾群算法这种元启发式优化算法来解决无人机在复杂城市环境中进行航行时的避障
- 基于Simulink的单个PWM信号的傅里叶分析&特定谐波抑制
科研辅导帮
傅立叶分析
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理
- 【MATLAB源码-第269期】基于matlab的鱼鹰优化算法(OOA)无人机三维路径规划,输出做短路径图和适应度曲线.
Matlab程序猿小助手
路径规划matlab算法开发语言人工智能无人机网络机器人
操作环境:MATLAB2022a1、算法描述鱼鹰优化算法(OspreyOptimizationAlgorithm,简称OOA)是一种新兴的基于自然界生物行为的智能优化算法,其灵感来自于鱼鹰这种海鸟在捕猎过程中的独特行为。鱼鹰是一种生活在全球范围内的猛禽,以鱼类为主食。它们的捕猎方式非常高效和精准,能够通过快速调整飞行路径和俯冲角度来捕捉猎物。鱼鹰的捕猎行为不仅表现出高度的灵活性,还能在不同环境中表
- 遗传算法基础讲解
HH予
深度学习
一、遗传算法基础1.什么是遗传算法?一种模拟生物进化过程的优化算法,基于达尔文的“自然选择”和“遗传学理论”。核心思想:通过选择(优胜劣汰)、交叉(基因重组)、变异(基因突变)操作,逐步逼近问题的最优解。2.为什么用遗传算法?适用性强:解决复杂的非线性、多峰、离散或连续优化问题。无需梯度信息:对目标函数的数学性质要求低,适合黑箱优化。全局搜索能力:通过种群并行搜索,避免陷入局部最优,适合多维优化。
- 深度学习进阶:TensorFlow实战指南
ELSON麦香包
本文还有配套的精品资源,点击获取简介:《TensorFlow实战Google深度学习框架》详细指导读者学习TensorFlow,涵盖基础概念、数据流图、API使用、张量和变量操作,深度学习基础如CNN和RNN,以及自定义层和优化算法。书中还提供使用TensorFlow构建和训练深度学习模型的实例,包括AlexNet、VGG、ResNet以及LSTM和GRU,并通过图像分类和文本情感分析等实战案例,
- 图像识别技术与应用课后总结(14)
一元钱面包
人工智能
训练模型加载预处理数据集:可以借助PyTorch的数据处理工具,如torch.utils和torchvision等定义损失函数:既可以自定义,也能使用PyTorch内置的,像回归任务常用nn.MSELoss(),分类任务常用nn.BCELoss()定义优化方法:PyTorch的优化方法封装在torch.optim中,基于基类optim.Optimizer,能实现自定义优化步骤。常用的优化算法如梯度
- 机器学习—赵卫东阅读笔记(一)
走在考研路上
深度学习了解机器学习笔记人工智能
第一章:机器学习基础1.1.2机器学习主要流派1.符号主义2.贝叶斯分类——基础是贝叶斯定理3.联结主义——源于神经学,主要算法是神经网络。——BP算法:作为一种监督学习算法,训练神经网络时通过不断反馈当前网络计算结果与训练数据之间的误差来修正网络权重,使误差足够小。4.进化计算——通过迭代优化,找到最佳结果。——具有自组织、自适应、自学习的特性,能够有效处理传统优化算法难以解决的复杂问题(例如N
- 智能优化算法应用:基于旗鱼算法与双伽马校正的图像自适应增强算法
智能算法研学社(Jack旭)
智能优化算法应用图像增强算法计算机视觉人工智能
智能优化算法应用:基于旗鱼算法与双伽马校正的图像自适应增强算法-附代码文章目录智能优化算法应用:基于旗鱼算法与双伽马校正的图像自适应增强算法-附代码1.全局双伽马校正2.旗鱼算法3.适应度函数设计4.实验与算法结果5.参考文献6.Matlab代码摘要:本文主要介绍基于旗鱼算法与双伽马校正的图像自适应增强算法。1.全局双伽马校正设图像的灰度值范围被归一化到[0,1]范围之内,基于全局亮度的双伽马调整
- 寻找最优解的算法-模拟退火算法(Simulated Annealing)
搞技术的妹子
算法模拟退火算法人工智能
模拟退火算法(SimulatedAnnealing,简称SA)是一种基于物理退火过程的优化算法。它灵感来源于金属退火过程中的分子运动——在高温下,金属分子的自由度很高,随着温度的逐渐降低,分子排列逐渐有序,最终达到最低能量状态。退火算法通过模拟这一过程,解决复杂的优化问题。在现实生活中,我们经常会遇到寻找最优解的问题,无论是优化路线、调度任务还是调整模型参数。模拟退火算法(SimulatedAnn
- 素数查找算法:从基础到高效
比特bit.
算法c#
在编程中,素数查找是一个经典的问题。本文将展示如何通过优化算法来提高素数查找的效率。我们从基础的实现开始,逐步改进代码,使其更加高效。初始代码首先,我们来看一个基础的实现,该代码用于找出100到200之间的所有素数,并将其打印出来。#includeintmain(){inti=0;for(i=100;i#includeintmain(){inti=0;for(i=101;i<=200;i+=2)/
- 推荐算法工程师的技术图谱和学习路径
执于代码
开发者职业加速服务推荐算法学习算法
推荐算法工程师的技术图谱和学习路径可以从多个维度进行概述,可以总结如下:一、技术图谱推荐算法工程师需要掌握的技术栈主要分为以下几个方面:数学基础:微积分、线性代数、概率论与统计学是推荐算法的基础,用于理解模型的数学原理和优化算法。高等数学、最优化理论、几何和图论等知识对于复杂模型的设计和优化至关重要。编程与数据结构:熟练掌握Python、Java等编程语言,具备良好的编程习惯和代码优化能力。掌握数
- 深度学习pytorch之4种归一化方法(Normalization)原理公式解析和参数使用
@Mr_LiuYang
计算机视觉基础归一化正则化NormlizationBatchNormLayerNormInstanceNromGroupNorm
深度学习pytorch之22种损失函数数学公式和代码定义深度学习pytorch之19种优化算法(optimizer)解析深度学习pytorch之4种归一化方法(Normalization)原理公式解析和参数使用摘要归一化(Normalization)是提升模型性能、加速训练的重要技巧。归一化方法可以帮助减少梯度消失或爆炸的问题,提升模型的收敛速度,且对最终模型的性能有显著影响。本文将以PyTorc
- 【数学建模】基于matlab模拟无人车泊车问题仿真
matlab科研助手
数学建模matlab开发语言
✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,代码获取、论文复现及科研仿真合作可私信。个人主页:Matlab科研工作室个人信条:格物致知。更多Matlab完整代码及仿真定制内容点击智能优化算法神经网络预测雷达通信无线传感器电力系统信号处理图像处理路径规划元胞自动机无人机物理应用机器学习内容介绍无人驾驶汽车技术近年来取得了飞速发展,其中自动泊车功能是关键技术之一。本文将重点讨论无
- Python实现三维空间中的RRT避障路径规划算法
C_mony
机械臂python算法机器人
文章目录前言一、算法原理二、代码实现1.定义节点2.碰撞检测3.RRT算法4.完整代码运行结果前言基于快速随机搜索树(Rapidly-exploringRandomTree,RRT)的优化算法,通过对状态空间中的采样点进行碰撞检测,避免了对空间的建模,能够有效地解决高维空间和复杂约束的路径规划问题,在机械臂路径规划与避障中扮演着关键角色。RRT算法通过随机生成的树状结构来探索高维空间,尤其适合于解
- 梯度下降法(Gradient Descent) -- 现代机器学习的血液
AOIWB
机器学习人工智能python
梯度下降法(GradientDescent)–现代机器学习的血液梯度下降法是现代机器学习最核心的优化引擎。本文从数学原理、算法变种、应用场景到实践技巧,用三维可视化案例和代码实现揭示其内在逻辑,为你构建完整的认知体系。优化算法一、梯度下降法的定义与核心原理定义:梯度下降法是一种通过迭代更新参数来最小化目标函数的优化算法,其核心思想是沿着当前点的负梯度方向逐步逼近函数最小值。数学表达:参数更新公式为
- mysql的算法
再见,再也不见(๑><๑)
mysql算法数据库
MySQL是一个关系型数据库管理系统,其内部实现了许多算法来支持各种数据库操作和功能。以下是MySQL中一些常用的算法:查询优化算法:查询执行计划生成:MySQL使用查询优化器来生成最优的查询执行计划,以提高查询性能。优化器会考虑索引、表的统计信息、连接顺序等因素来选择最佳的执行计划。索引选择算法:MySQL会根据查询条件和表结构来选择合适的索引进行查询,常见的索引选择算法包括最左前缀匹配、覆盖索
- 神经网络中的Adam
化作星辰
神经网络人工智能深度学习
Adam(AdaptiveMomentEstimation)是一种广泛使用的优化算法,结合了RMSprop和动量(Momentum)的优点。它通过计算梯度的一阶矩估计(mean)和二阶矩估计(uncenteredvariance),为每个参数提供自适应学习率。Adam由DiederikP.Kingma和JimmyBa在2014年的论文《Adam:AMethodforStochasticOptimi
- 神经网络中的Nesterov Momentum
化作星辰
神经网络人工智能深度学习
NesterovAcceleratedGradient(NAG),也称为NesterovMomentum,是一种改进版的动量优化算法,旨在加速梯度下降过程中的收敛速度,并提高对最优解的逼近效率。它由YuriiNesterov在1983年提出,是对传统动量方法的一种增强。###传统动量法回顾在传统的动量方法中,更新规则不仅考虑当前的梯度,还包含了之前所有梯度的方向和大小的累积(即“动量”),以帮助克
- 神经网络中的Adagrad
化作星辰
神经网络人工智能深度学习
Adagrad(AdaptiveGradient)是一种自适应学习率的优化算法,专门设计用于在训练过程中自动调整每个参数的学习率。这种方法对于处理稀疏数据特别有效,并且非常适合那些需要频繁更新但很少使用的参数的学习任务。###Adagrad的核心思想Adagrad通过累积过去所有梯度平方的和来调整每个权重的学习率。具体来说,它为网络中的每个参数维护一个历史梯度平方和,然后用这个累积值来缩放当前的学
- 月之暗面改进并开源了 Muon 优化算法,对行业有哪些影响?
互联网之路.
知识点开源算法
互联网各领域资料分享专区(不定期更新):Sheet正文月之暗面团队改进并开源的Muon优化算法在深度学习和大模型训练领域引发了广泛关注,其核心创新在于显著降低算力需求(相比AdamW减少48%的FLOPs)并提升训练效率,同时通过开源推动技术生态的共建。1.显著降低大模型训练成本,推动技术普惠算力需求锐减:Muon通过引入权重衰减和一致的RMS更新,解决了原始Muon在大规模训练中的稳定性问题,使
- 单目标:鹅优化算法
Luis Li 的猫猫
算法matlab推荐算法
一、简介鹅优化算法(GOOSEAlgorithm,GO)是2024年由RebwarKhalidHamad提出的一种群智能优化算法,该成果发表在知名SCI期刊JCQ3区EvolvingSystems上。这是一种基于鹅的休息和觅食行为的新型元启发式算法。二、仿生学原理1.鹅的休息行为鹅休息时会成群聚集,其中一只用单腿保持平衡,守护群体。并且偶尔这只守护鹅会抬起一条腿,扛起一块小石头,睡着时石头掉落它就
- IABC-CEC2005原创3种策略改进蜂群优化算法ABC,Matlab代码
九亿AI算法优化工作室&
算法回归matlab数据挖掘人工智能
蜂群优化算法,又称人工蜂群算法,是DervisKaraboga在2005年提出的模拟蜜蜂群体智能行为的优化算法,以下是其主要信息:原理:模拟蜂群中雇佣蜂、观察蜂、侦察蜂的分工与行为。食物源位置代表问题解,花蜜量对应解的质量,蜜蜂通过信息传递与共享,不断寻找和更新食物源以找到最优解。流程:1、初始化:随机生成初始食物源种群并计算花蜜量。2、雇佣蜂阶段:在当前食物源邻域搜索并更新。3、观察蜂阶段:根据
- 点云配准(点云拼接)论文综述
点云SLAM
点云数据处理技术点云数据处理点云配准DeepICPICP深度学习配准方法特征匹配
点云配准(点云拼接)论文综述1.引言点云配准(PointCloudRegistration)是三维计算机视觉与机器人感知领域的核心任务,其目标是通过几何变换将多个点云对齐至统一坐标系,形成完整的场景表示。该技术广泛应用于自动驾驶、增强现实、工业检测、医学影像等领域。随着传感器技术(如LiDAR、RGB-D相机)的进步与深度学习的发展,点云配准方法经历了从传统优化算法到数据驱动模型的演变。本文系统综
- 解读 DeepSeek 关键 RL 算法 GRPO
进一步有进一步的欢喜
LLM算法DeepSeekGRPO
DeepSeekGRPO:面向超大规模RLHF的梯度正则化策略优化算法引言在当下人工智能蓬勃发展的浪潮里,DeepSeek无疑是一颗耀眼的明星,频繁出现在各类科技前沿讨论中,热度持续攀升。从惊艳的模型表现,到不断拓展的应用场景,DeepSeek正以强劲之势重塑着行业格局。大家不难发现,无论是复杂的自然语言处理任务,还是充满挑战的智能推理难题,DeepSeek都能展现出卓越的性能。而这斐然成绩的背后
- 智能优化算法应用:基于哈里斯鹰算法与双伽马校正的图像自适应增强算法
智能算法研学社(Jack旭)
智能优化算法应用图像增强算法计算机视觉人工智能
智能优化算法应用:基于哈里斯鹰算法与双伽马校正的图像自适应增强算法-附代码文章目录智能优化算法应用:基于哈里斯鹰算法与双伽马校正的图像自适应增强算法-附代码1.全局双伽马校正2.哈里斯鹰算法3.适应度函数设计4.实验与算法结果5.参考文献6.Matlab代码摘要:本文主要介绍基于哈里斯鹰算法与双伽马校正的图像自适应增强算法。1.全局双伽马校正设图像的灰度值范围被归一化到[0,1]范围之内,基于全局
- 【25年新算法】DOA-LSSVM梦境优化算法优化最小二乘支持向量机回归预测,DOA-LSSVM回归预测,多变量输入模型。梦境优化算法(DOA)-2025年3月SCI一区新算法,该算法结合了一个基
智能算法及其模型预测
支持向量机回归算法
【25年新算法】DOA-LSSVM梦境优化算法优化最小二乘支持向量机回归预测,DOA-LSSVM回归预测,多变量输入模型。梦境优化算法(DOA)-2025年3月SCI一区新算法,该算法结合了一个基本的记忆策略,一个遗忘和补充策略,以平衡探索和利用,值得一试!该成果由YifanLang于2025年3月发表在SCI一区Top期刊《ComputerMethodsinAppliedMechanicsand
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数