图像处理中的数学原理详解21——PCA实例与图像编码

欢迎关注我的博客专栏“图像处理中的数学原理详解”

全文目录请见 图像处理中的数学原理详解(总纲)

http://blog.csdn.net/baimafujinji/article/details/48467225



如果你对PCA的推导和概念还不是很清楚,建议阅读本文的前导文章

http://blog.csdn.net/baimafujinji/article/details/50372906


6.4.3 主成分变换的实现


本小节通过一个算例验证一下之前的推导。在前面给出的例子中,各点在原始的

图像处理中的数学原理详解21——PCA实例与图像编码_第1张图片

由于方程是齐次的,所以不独立。因为系数矩阵有零行列式,所以方程有非无效解。从两个方程的任何一个可见

图像处理中的数学原理详解21——PCA实例与图像编码_第2张图片

现在考虑该结论该如何解释。特征向量g1和g2是在原坐标系中用来定义主成分轴的向量,如图6-20所示,其中,e1和e2分别是水平和垂直的方向向量。显而易见,这些数据在新坐标系中是非相关的。该新坐标系是原坐标系的旋转,出于这种原因,可以将主成分变换理解为旋转变换(即使在高维空间上亦是如此)。

图像处理中的数学原理详解21——PCA实例与图像编码_第3张图片

图像处理中的数学原理详解21——PCA实例与图像编码_第4张图片

6.4.4 基于K-L变换的图像压缩

从图像压缩的角度出发,我们必然希望变换系数协方差矩阵Σx 中除对角线外的所有协方差均为零,成为对角线矩阵,即原来像素间的相关性经变换后全部解除,或者至少大部分协方差要等于或接近于零。为此,需要选择适当的变换矩阵,它作用于Σx 后使其变成对角线型。通过前面的分析和推导,可知这样的变换矩阵是存在的。如果用协方差矩阵Σx 的特征向量作变换的基向量,即由Σx 的特征向量作为正交变换的变换矩阵,就可以得到对角线型的变换域协方差矩阵Σy 。K-L变换就是采用这种矩阵进行变换的正交变换,它可以在变换域完全解除相关性,因此是理论上的最佳变换。同时,换一个角度也可以证明,K-L变换是均方误差最小准则下的最佳变换,即当压缩比确定的情况下,采用K-L变换后,重建图像的均方误差比采用任何其他正交变换的都小。

但是回顾之前进行的K-L变换,哪个步骤可以称为图像压缩的切入点呢?一幅大小为M×N的图像,它的协方差矩阵Σx大小为MN×MN。由上述K-L变换理论可知,对X进行K-L变换的变换矩阵就是Σx的特征向量矩阵,该矩阵大小亦为MN×MN,其大小远远大于原始图像数据矩阵。而且要在解码时恢复原图像,不但需要变换后的系数矩阵Y,还需要知道逆变换矩阵(也就是变换矩阵的转置)。如果不经过任何处理就这样直接将K-L变换用于数字图像的压缩编码,不但达不到任何数据压缩的效果,还极大的增加了数据量。即使仅保留一个最大的特征值,变换矩阵中和该特征值对应的特征向量为M×N维,系数矩阵 Y 保留的元素为一个。要重建图像数据,需要保留的元素个数为仍大于原矩阵,所以达不到压缩的目的。另外,求一个矩阵的协方差矩阵和特征向量矩阵,都是非常复杂的运算过程,需要大量的计算。当X比较大时,运算时间的耗用可能是非常大的。有时甚至会出现因为过于复杂而导致Σx和变换矩阵无法求解的情况。


要解决上述问题,可以考虑将图像分成若干个小块,然后对每个小块分别进行K-L变换(这与本章前面的处理方式基本保持一致)。这样使得Σx和变换矩阵都比较小,计算机处理起来比较容易而且速度快。这里仍然将图像划分为多个不重叠的8×8小块(当图像垂直和水平方向的像素数不是8的倍数时补0,使之均为8的倍数)。然后再分别对每一个小块执行K-L变换,变换矩阵的数目为K个,每个矩阵大小为64×64,仅变换矩阵就要记录K×64×64个数据,还是远远大于原始数据的个数M×N。是否可以让变换矩阵的数量变得少些,最好只保留一个变换矩阵。回忆前面做K-L变换的例子,变换矩阵的大小与输入矩阵的维度有关,而与样本数量无关,据此可以将每个8×8小块变成一个行向量(也就是一个64维的数组),原图中的每一个小方块都是一个64维的样本。所以最后只需要一个64×64的变换矩阵即可,它对于原图像的任意一个数据块都适用。这样的处理方式并不是完全意义上的K-L 变换,因为采用分块的处理方式,各个数据块之间的相关性是没有消除的。但实验亦表明,这样的K-L 变换虽然不能完全消除图像各像素点之间的相关性,也能达到很好的去相关效果,在去相关性性能上优于离散余弦变换。


图像处理中的数学原理详解21——PCA实例与图像编码_第5张图片

图像数据经K-L变换后,得到的系数矩阵Y大部分系数都很小,接近于零。只有很少的几个系数的数值比较大,这正是K-L变换所起到的去除像素间的相关性,把能量集中分布在较少的变换系数上的作用的结果。据此,在图像数据压缩时,系数矩阵Y保留M个分量,其余分量则舍去。在实际编程开发中,经K-L变换后的系数矩阵中的数值都是按从大到小的顺序排列的,所以直接舍去后面的64−M个分量即可。通过这一步的处理,便可动态地调节压缩编码系统的压缩比和重建图像的质量。解码时,首先做K-L逆变换,然后将上述过程逆转,可以得到重建后的图像数据矩阵。


我们在MATLAB中编写的示例程序演示了运用上述方法对图像实施基于K-L变换的压缩处理的过程。最后可以通过编程实现基于K-L变换的图像压缩算法并测试其压缩效果,所得之测试结果如图6-22所示。该程序验证了三种不同的压缩比,即舍去排序后的系数矩阵中的32/64(对应压缩比50%)、48/64(对应压缩比75%)以及56/64(对应压缩比87.5%)。相关测试程序源码读者可以从本书的在线支持资源中下载得到。


最后需要补充说明的是尽管K-L变换可以将数据之间的相关性完全去除,所以理论上是一种最理想的数据压缩方案,但它在实际应用过程中仍然受到很大局限。例如,它没有快速算法,不同的图像所对应的变换矩阵也不同,从这个角度来说,单纯将K-L变换直接应用于图像数据压缩的理论价值要大于实际价值。它的存在意义,一方面是可以作为理论验证的参考模板,另一方面就是需要对原始算法加以改进后再付诸应用。


我的“图像处理中的数学原理”专栏中之系列文章已经以《图像处理中的数学修炼》为名结集出版(清华大学出版社)。该书详细介绍图像处理中的数学原理,为你打开一道通往图像世界的数学之门,详细内容及目录请见 http://blog.csdn.net/baimafujinji/article/details/48467225


图像处理中的数学原理详解21——PCA实例与图像编码_第6张图片

你可能感兴趣的:(图像处理中的数学,图像处理中的数学原理详解)