第4章 朴素贝叶斯(NaiveBayes)代码实现

=============================== 【回到目录】===============================

第4章 朴素贝叶斯(NaiveBayes)代码实现

贝叶斯算法(极大似然估计)-- 高斯朴素贝叶斯

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

from collections import Counter
import math

# data
def create_data():
    iris = load_iris()
    df = pd.DataFrame(iris.data, columns=iris.feature_names)
    df['label'] = iris.target
    df.columns = ['sepal length', 'sepal width', 'petal length', 'petal width', 'label']
    data = np.array(df.iloc[:100, :])
    # print(data)
    return data[:,:-1], data[:,-1]

X, y = create_data()
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)

class NaiveBayes:
    def __init__(self):
        self.model = None

    # 数学期望
    @staticmethod #这里定义为成员函数也是可以的
    def mean(X):
        return sum(X) / float(len(X))

    # 标准差(方差)
    def stdev(self, X):
        avg = self.mean(X)
        return math.sqrt(sum([pow(x-avg, 2) for x in X]) / float(len(X))) #这里不用for x in X也可以

    # 概率密度函数
    def gaussian_probability(self, x, mean, stdev):
        exponent = math.exp(-(math.pow(x-mean,2)/(2*math.pow(stdev,2))))
        return (1 / (math.sqrt(2*math.pi) * stdev)) * exponent

    # 处理X_train
    def summarize(self, train_data):
        summaries = [(self.mean(i), self.stdev(i)) for i in zip(*train_data)] #注意这里的zip(*train_data)的用法
        return summaries

    # 分类别求出数学期望和标准差
    def fit(self, X, y):
        labels = list(set(y))
        data = {label:[] for label in labels}
        for f,  label in zip(X, y):
            data[label].append(f)
        self.model = {label: self.summarize(value) for label, value in data.items()}
        return 'gaussianNB train done!'

    # 计算概率
    def calculate_probabilities(self, input_data):
        # summaries:{0.0: [(5.0, 0.37),(3.42, 0.40)], 1.0: [(5.8, 0.449),(2.7, 0.27)]}
        # input_data:[1.1, 2.2]
        probabilities = {}
        for label, value in self.model.items():
            probabilities[label] = 1
            for i in range(len(value)):
                mean, stdev = value[i]
                probabilities[label] *= self.gaussian_probability(input_data[i], mean, stdev) #probability[label]=1???
        return probabilities

    # 类别
    def predict(self, X_test):
        # {0.0: 2.9680340789325763e-27, 1.0: 3.5749783019849535e-26}
        label = sorted(self.calculate_probabilities(X_test).items(), key=lambda x: x[-1])[-1][0] #sorted之后是一个list[tuple, tuple]
        return label

    def score(self, X_test, y_test):
        right = 0
        for X, y in zip(X_test, y_test):
            label = self.predict(X)
            if label == y:
                right += 1

        return right / float(len(X_test))

model = NaiveBayes()
model.fit(X_train, y_train)
print(model.predict([4.4,  3.2,  1.3,  0.2]))
print(model.score(X_test, y_test))

output:

0.0
1.0

sklearn.naive_bayes

from sklearn.naive_bayes import GaussianNB

clf = GaussianNB()
clf.fit(X_train, y_train)
print(clf.score(X_test, y_test))
print(clf.predict([[4.4,  3.2,  1.3,  0.2]])) #注意这里要求二维
from sklearn.naive_bayes import BernoulliNB, MultinomialNB # 伯努利模型和多项式模型

output:

1.0
[0.]

你可能感兴趣的:(《统计学习方法》,《统计学习方法》)