2017 年 6 月, Google 公司开放了 TensorFlow Object Detection API 。 这 个项目使用 TensorFlow 实现了大多数深度学习目标检测框架,真中就包括Faster R-CNN。
本系列文章将
(1)先介绍如何安装 TensorFlow Object Detection API;
(2)再介绍如何使用已经训练好的模型进行物体检测 ;
(3)最后介绍如何训练自己的 模型;
之前已经完成了安装篇的讲解(Tensorflow Object Detection API安装)安装环境如果是win10 CPU的话请参考(win10 CPU Tensorflow Object Detection API安装与测试)
本文讲基于已有的训练模型做目标检测。
TensorFlow Object Detection API 默认提供了 5 个预训练模型,都是使用 coco 数据集训练完成的,结构分别为
SSD+MobileNet、 (想了解网络结构可参考Mobilenet的模型结构和MobileNet-SSD的模型结构)
SSD+Inception、
R-FCN+ResNet10I 、
Faster RCNN+ResNetl0l 、
Faster RCNN+Inception_ResNet
官方给了一个检测的例子,在object_detection 文件夹下 有个 object_detection_tutorial.ipynb 文件,运行方式是:打开anaconda prompt(类似cmd,假设你前提已经安装了jupyter notebook),将工作路径切换到object_detection目录,输入jupyter notebook; 然后就出现网页交互式的界面。输入指令如下:
使用“Shift+Enter”组合键对.ipynb文件一一执行。该文件的源码和执行结果如下:
#Object Detection Demo
#Welcome to the object detection inference walkthrough! This notebook will walk you #step by step through the process of using a pre-trained model to detect objects in #an image. Make sure to follow the installation instructions before you start.
#Imports
import numpy as np
import os
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
from collections import defaultdict
from io import StringIO
from matplotlib import pyplot as plt
from PIL import Image
## Env setup
# This is needed to display the images.
%matplotlib inline
# This is needed since the notebook is stored in the object_detection folder.
sys.path.append("..")
## Object detection imports
Here are the imports from the object detection module.
from utils import label_map_util
from utils import visualization_utils as vis_util
# Model preparation
## Variables
#Any model exported using the `export_inference_graph.py` tool can be loaded here #simply by changing `PATH_TO_CKPT` to point to a new .pb file.
#By default we use an "SSD with Mobilenet" model here. See the [detection model zoo](https://github.com/tensorflow/models/blob/master/object_detection/g3doc/detection_mo#del_zoo.md) for a list of other models that can be run out-of-the-box with varying #speeds and accuracies.
# What model to download.
MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = MODEL_NAME + '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt')
NUM_CLASSES = 90
## Download Model
opener = urllib.request.URLopener()
opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
file_name = os.path.basename(file.name)
if 'frozen_inference_graph.pb' in file_name:
tar_file.extract(file, os.getcwd())
## Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
## Loading label map
#Label maps map indices to category names, so that when our convolution network #predicts `5`, we know that this corresponds to `airplane`. Here we use internal #utility functions, but anything that returns a dictionary mapping integers to #appropriate string labels would be fine
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
## Helper code
def load_image_into_numpy_array(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
# Detection
# For the sake of simplicity we will use only 2 images:
# image1.jpg
# image2.jpg
# If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS.
PATH_TO_TEST_IMAGES_DIR = 'test_images'
TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 3) ]
#TEST_IMAGE_PATHS = ['test_images']
# Size, in inches, of the output images.
IMAGE_SIZE = (12, 8)
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess:
for image_path in TEST_IMAGE_PATHS:
image = Image.open(image_path)
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
image_np = load_image_into_numpy_array(image)
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
plt.figure(figsize=IMAGE_SIZE)
plt.imshow(image_np)
以上程序是以SSD + MobileNet的网络结构为例子,你可可以将MODEL_NAME的内容替换成以下内容。
MODEL_NAME =’ssd_inception_v2_coco_11_06_2017'
MODEL NAME = 'rfcn_resnet101_coco_11_06_2017'
MODEL NAME =’faster_rcnn_resnet10l_coco_11_06_2017 ’
MODEL NAME =’ faster_rcnn_inception_resnet_v2_atrous_coco_11_06_2017'
模型的下载地址为 Tensorflow预训练模型下载
可自行对比各个模型结构的检测性能。