In [194]: import matplotlib.pyplot as plt
In [195]: plt.figure() #创建一个幕布
Out[195]:
In [196]: s = pd.Series(np.random.randn(10).cumsum(),index = np.arange(0,100,10))
In [197]: s.plot()
Out[197]:
In [198]: plt.show() #显示图形
注:在ipython中要写成如下代码才会显示图像:
import matplotlib.pyplot as plt
plt.figure()
df.plot()
plt.show()
In [206]: fig,axes = plt.subplots(2,1)
In [207]: data = pd.Series(np.random.randn(16),index = list('abcdefghijklmnop'))
In [208]: data.plot.bar(ax=axes[0],color='k',alpha=0.7) #alpha为图表的填充不透明度
Out[208]:
In [209]: data.plot.barh(ax=axes[1],color='k',alpha=0.7)
Out[209]:
In [210]: plt.show()
In [211]: df = pd.DataFrame(np.random.rand(6, 4), index=['one', 'two', 'three', 'four', 'fiv
...: e', 'six'],columns=pd.Index(['A', 'B', 'C', 'D'], name='Genus'))
In [212]: df
Out[212]:
Genus A B C D
one 0.783765 0.973372 0.397304 0.668468
two 0.849481 0.883813 0.059709 0.620467
three 0.188168 0.387766 0.975336 0.781791
four 0.996210 0.188114 0.205050 0.492547
five 0.404493 0.192918 0.305952 0.436618
six 0.475883 0.312828 0.720343 0.637083
In [213]: df.plot.bar()
Out[213]:
In [215]: plt.show()
传入stacked=True产生堆叠效果:
In [216]: df.plot.bar(stacked=True)
Out[216]:
In [217]: plt.show()
In [219]: import seaborn as sns
In [220]: comp1 = np.random.normal(0,1,size=200)
In [221]: comp2 = np.random.normal(10,2,size=200)
In [222]: values = pd.Series(np.concatenate([comp1,comp2]))
In [223]: sns.distplot(values,bins=100,color='k')
Out[223]:
In [224]: plt.show()
In [227]: tips = pd.read_csv("https://raw.githubusercontent.com/mwaskom/seaborn-data/master/tips.csv ")
In [233]: tips
Out[233]:
total_bill tip sex smoker day time size
0 16.99 1.01 Female No Sun Dinner 2
1 10.34 1.66 Male No Sun Dinner 3
2 21.01 3.50 Male No Sun Dinner 3
3 23.68 3.31 Male No Sun Dinner 2
4 24.59 3.61 Female No Sun Dinner 4
5 25.29 4.71 Male No Sun Dinner 4
6 8.77 2.00 Male No Sun Dinner 2
7 26.88 3.12 Male No Sun Dinner 4
8 15.04 1.96 Male No Sun Dinner 2
9 14.78 3.23 Male No Sun Dinner 2
10 10.27 1.71 Male No Sun Dinner 2
11 35.26 5.00 Female No Sun Dinner 4
12 15.42 1.57 Male No Sun Dinner 2
13 18.43 3.00 Male No Sun Dinner 4
14 14.83 3.02 Female No Sun Dinner 2
15 21.58 3.92 Male No Sun Dinner 2
16 10.33 1.67 Female No Sun Dinner 3
17 16.29 3.71 Male No Sun Dinner 3
18 16.97 3.50 Female No Sun Dinner 3
19 20.65 3.35 Male No Sat Dinner 3
20 17.92 4.08 Male No Sat Dinner 2
21 20.29 2.75 Female No Sat Dinner 2
22 15.77 2.23 Female No Sat Dinner 2
23 39.42 7.58 Male No Sat Dinner 4
24 19.82 3.18 Male No Sat Dinner 2
25 17.81 2.34 Male No Sat Dinner 4
26 13.37 2.00 Male No Sat Dinner 2
27 12.69 2.00 Male No Sat Dinner 2
28 21.70 4.30 Male No Sat Dinner 2
29 19.65 3.00 Female No Sat Dinner 2
.. ... ... ... ... ... ... ...
214 28.17 6.50 Female Yes Sat Dinner 3
215 12.90 1.10 Female Yes Sat Dinner 2
216 28.15 3.00 Male Yes Sat Dinner 5
217 11.59 1.50 Male Yes Sat Dinner 2
218 7.74 1.44 Male Yes Sat Dinner 2
219 30.14 3.09 Female Yes Sat Dinner 4
220 12.16 2.20 Male Yes Fri Lunch 2
221 13.42 3.48 Female Yes Fri Lunch 2
222 8.58 1.92 Male Yes Fri Lunch 1
223 15.98 3.00 Female No Fri Lunch 3
224 13.42 1.58 Male Yes Fri Lunch 2
225 16.27 2.50 Female Yes Fri Lunch 2
226 10.09 2.00 Female Yes Fri Lunch 2
227 20.45 3.00 Male No Sat Dinner 4
228 13.28 2.72 Male No Sat Dinner 2
229 22.12 2.88 Female Yes Sat Dinner 2
230 24.01 2.00 Male Yes Sat Dinner 4
231 15.69 3.00 Male Yes Sat Dinner 3
232 11.61 3.39 Male No Sat Dinner 2
233 10.77 1.47 Male No Sat Dinner 2
234 15.53 3.00 Male Yes Sat Dinner 2
235 10.07 1.25 Male No Sat Dinner 2
236 12.60 1.00 Male Yes Sat Dinner 2
237 32.83 1.17 Male Yes Sat Dinner 2
238 35.83 4.67 Female No Sat Dinner 3
239 29.03 5.92 Male No Sat Dinner 3
240 27.18 2.00 Female Yes Sat Dinner 2
241 22.67 2.00 Male Yes Sat Dinner 2
242 17.82 1.75 Male No Sat Dinner 2
243 18.78 3.00 Female No Thur Dinner 2
[244 rows x 7 columns]
In [226]: fig,ax = plt.subplots()
In [229]: ax.violinplot(tips['total_bill'],vert=False)
Out[229]:
{'bodies': [],
'cmaxes': ,
'cmins': ,
'cbars': }
In [230]: plt.show()
In [231]: sns.violinplot(x ='total_bill',data=tips)
Out[231]:
In [232]: plt.show()
In [235]: iris = sns.load_dataset('iris')
In [236]: sns.swarmplot(x='species',y='petal_length',data=iris)
Out[236]:
In [237]: plt.show()
#
# A fatal error has been detected by the Java Runtime Environment:
#
# EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x00000000777c3290, pid=5632, tid=6656
#
# JRE version: Java(TM) SE Ru
Spring 中提供一些Aware相关de接口,BeanFactoryAware、 ApplicationContextAware、ResourceLoaderAware、ServletContextAware等等,其中最常用到de匙ApplicationContextAware.实现ApplicationContextAwaredeBean,在Bean被初始后,将会被注入 Applicati
在Java项目中,我们通常会自己写一个DateUtil类,处理日期和字符串的转换,如下所示:
public class DateUtil01 {
private SimpleDateFormat dateformat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
public void format(Date d
问题描述:
在实现类中的某一或某几个Override方法发生编译错误如下:
Name clash: The method put(String) of type XXXServiceImpl has the same erasure as put(String) of type XXXService but does not override it
当去掉@Over