上篇提到用 make geth 来编译geth客户端。我们来看看make file做了什么:
geth:
build/env.sh go run build/ci.go install ./cmd/geth
@echo "Done building."
@echo "Run \"$(GOBIN)/geth\" to launch geth."
执行了env.sh
# Create fake Go workspace if it doesn'texist yet.
workspace="$PWD/build/_workspace"
root="$PWD"
ethdir="$workspace/src/github.com/ethereum"
if [ ! -L "$ethdir/go-ethereum"]; then
mkdir -p "$ethdir"
cd "$ethdir"
ln -s ../../../../../. go-ethereum
cd "$root"
fi
# Set up the environment to use theworkspace.
GOPATH="$workspace"
export GOPATH
# Run the command inside the workspace.
cd "$ethdir/go-ethereum"
PWD="$ethdir/go-ethereum"
里面做了两件事情
1,ln -s命令在build/_workspace/ 目录上生成了go-etherum的一个文件镜像,不占用磁盘空间,与源文件同步更新
2,把工作目录 workspace加入GOPATH环境变量
跟踪进ci.go 关键函数
func doInstall(cmdline []string)
这个方法拼接了完整的geth 编译命令:
go install -ldflags -X main.gitCommit=722bac84fa503199b9c485c1a2bfba03bc487d -v ./cmd/geth
geth启动命令:
build/bin/geth --datadir =./data/00 --networkid 1 --fast --cache = 1024 --etherbase“[yourpreferred account]”console >>geth.log
--datadir设置区块链数据存放路径
--networkid 网络设置启动的区块链网路默认值是1表示以太坊公司,0,2,3表示测试网路,大于4表示本地私有网路
--fast同步方式,默认为fast要选择完全同步使用命令--syncmode full
--cache设置缓存大小(最小16MB /数据库强制)(默认值:128)
console表示启动控制台>>geth.log将控制台显示内容输出到文件geth.log中去
geth的源码入口main()函数在/cmd/geth/main.go
func main() {
if err := app.Run(os.Args); err != nil {
fmt.Fprintln(os.Stderr, err)
os.Exit(1)
}
}
// geth is the main entry point into the system if no special subcommand is ran.
// It creates a default node based on the command line arguments and runs it in
// blocking mode, waiting for it to be shut down.
func geth(ctx *cli.Context) error {
node := makeFullNode(ctx)
startNode(ctx, node)
node.Wait()
return nil
}
main.go/main() -> app.go/Run() - > app.go/HandleAction() - > main.go/geth()
通过这几个函数跳转来到了GETH启动入口。
从启动入口可以看到第一个启动的模块是node模块,通过makeFullNode函数来创建一个节点对象(在ETH里node可以认为是以太坊全网的一个节点,也可以认为是一个以太坊终端)。
func makeFullNode(ctx *cli.Context) *node.Node {
stack, cfg := makeConfigNode(ctx)
utils.RegisterEthService(stack, &cfg.Eth)
if ctx.GlobalBool(utils.DashboardEnabledFlag.Name) {
utils.RegisterDashboardService(stack, &cfg.Dashboard, gitCommit)
}
// Whisper must be explicitly enabled by specifying at least 1 whisper flag or in dev mode
shhEnabled := enableWhisper(ctx)
shhAutoEnabled := !ctx.GlobalIsSet(utils.WhisperEnabledFlag.Name) && ctx.GlobalIsSet(utils.DeveloperFlag.Name)
if shhEnabled || shhAutoEnabled {
if ctx.GlobalIsSet(utils.WhisperMaxMessageSizeFlag.Name) {
cfg.Shh.MaxMessageSize = uint32(ctx.Int(utils.WhisperMaxMessageSizeFlag.Name))
}
if ctx.GlobalIsSet(utils.WhisperMinPOWFlag.Name) {
cfg.Shh.MinimumAcceptedPOW = ctx.Float64(utils.WhisperMinPOWFlag.Name)
}
utils.RegisterShhService(stack, &cfg.Shh)
}
// Add the Ethereum Stats daemon if requested.
if cfg.Ethstats.URL != "" {
utils.RegisterEthStatsService(stack, cfg.Ethstats.URL)
}
return stack
}
进入 makeConfigNode()方法
func makeConfigNode(ctx *cli.Context) (*node.Node, gethConfig) {
// Load defaults.
cfg := gethConfig{
Eth: eth.DefaultConfig,
Shh: whisper.DefaultConfig,
Node: defaultNodeConfig(),
Dashboard: dashboard.DefaultConfig,
}
// Load config file.
if file := ctx.GlobalString(configFileFlag.Name); file != "" {
if err := loadConfig(file, &cfg); err != nil {
utils.Fatalf("%v", err)
}
}
// Apply flags.
utils.SetNodeConfig(ctx, &cfg.Node)
stack, err := node.New(&cfg.Node)
if err != nil {
utils.Fatalf("Failed to create the protocol stack: %v", err)
}
utils.SetEthConfig(ctx, stack, &cfg.Eth)
if ctx.GlobalIsSet(utils.EthStatsURLFlag.Name) {
cfg.Ethstats.URL = ctx.GlobalString(utils.EthStatsURLFlag.Name)
}
utils.SetShhConfig(ctx, stack, &cfg.Shh)
utils.SetDashboardConfig(ctx, &cfg.Dashboard)
return stack, cfg
}
makeConfigNode做了两件事1,函数获取以太坊相关服务(Eth Node Shh DashBoard)的默认配置 2,通过Node的默认配置来创建一个Node。返回node对象和cfg
makeFullNode把创建ethservice、创建DashBoard service、创建Shhservice以及创建ethStats service注册到Node
从这里我们可以看出来eth DashBoard Shh ethStats都是从node.Service接口派生出来的,它们的实例化对象需要实现node.Service所有接口,这在以后相关模块的分析中会遇到
type Service interface {
// Protocols retrieves the P2P protocols the service wishes to start.
Protocols() []p2p.Protocol
// APIs retrieves the list of RPC descriptors the service provides
APIs() []rpc.API
// Start is called after all services have been constructed and the networking
// layer was also initialized to spawn any goroutines required by the service.
Start(server *p2p.Server) error
// Stop terminates all goroutines belonging to the service, blocking until they
// are all terminated.
Stop() error
}
Protocols() 返回service要启动的P2P 协议列表
APIs() 返回service提供的RPC接口
Start() 启动已经初始化的service
Stop() 停止service所有的goroutines,并阻塞线程知道所有goroutines都终止
接下来调用startNode来启动
// startNode boots up the system node and all registered protocols, after which
// it unlocks any requested accounts, and starts the RPC/IPC interfaces and the
// miner.
func startNode(ctx *cli.Context, stack *node.Node) {
// Start up the node itself
utils.StartNode(stack)
// Unlock any account specifically requested
ks := stack.AccountManager().Backends(keystore.KeyStoreType)[0].(*keystore.KeyStore)
passwords := utils.MakePasswordList(ctx)
unlocks := strings.Split(ctx.GlobalString(utils.UnlockedAccountFlag.Name), ",")
for i, account := range unlocks {
if trimmed := strings.TrimSpace(account); trimmed != "" {
unlockAccount(ctx, ks, trimmed, i, passwords)
}
}
// Register wallet event handlers to open and auto-derive wallets
events := make(chan accounts.WalletEvent, 16)
stack.AccountManager().Subscribe(events)
go func() {
// Create an chain state reader for self-derivation
rpcClient, err := stack.Attach()
if err != nil {
utils.Fatalf("Failed to attach to self: %v", err)
}
stateReader := ethclient.NewClient(rpcClient)
// Open any wallets already attached
for _, wallet := range stack.AccountManager().Wallets() {
if err := wallet.Open(""); err != nil {
log.Warn("Failed to open wallet", "url", wallet.URL(), "err", err)
}
}
// Listen for wallet event till termination
for event := range events {
switch event.Kind {
case accounts.WalletArrived:
if err := event.Wallet.Open(""); err != nil {
log.Warn("New wallet appeared, failed to open", "url", event.Wallet.URL(), "err", err)
}
case accounts.WalletOpened:
status, _ := event.Wallet.Status()
log.Info("New wallet appeared", "url", event.Wallet.URL(), "status", status)
if event.Wallet.URL().Scheme == "ledger" {
event.Wallet.SelfDerive(accounts.DefaultLedgerBaseDerivationPath, stateReader)
} else {
event.Wallet.SelfDerive(accounts.DefaultBaseDerivationPath, stateReader)
}
case accounts.WalletDropped:
log.Info("Old wallet dropped", "url", event.Wallet.URL())
event.Wallet.Close()
}
}
}()
// Start auxiliary services if enabled
if ctx.GlobalBool(utils.MiningEnabledFlag.Name) || ctx.GlobalBool(utils.DeveloperFlag.Name) {
// Mining only makes sense if a full Ethereum node is running
if ctx.GlobalBool(utils.LightModeFlag.Name) || ctx.GlobalString(utils.SyncModeFlag.Name) == "light" {
utils.Fatalf("Light clients do not support mining")
}
var ethereum *eth.Ethereum
if err := stack.Service(ðereum); err != nil {
utils.Fatalf("Ethereum service not running: %v", err)
}
// Use a reduced number of threads if requested
if threads := ctx.GlobalInt(utils.MinerThreadsFlag.Name); threads > 0 {
type threaded interface {
SetThreads(threads int)
}
if th, ok := ethereum.Engine().(threaded); ok {
th.SetThreads(threads)
}
}
// Set the gas price to the limits from the CLI and start mining
ethereum.TxPool().SetGasPrice(utils.GlobalBig(ctx, utils.GasPriceFlag.Name))
if err := ethereum.StartMining(true); err != nil {
utils.Fatalf("Failed to start mining: %v", err)
}
}
}
首先node start自己。node将之前注册的所有service交给p2p.Server, 然后启动p2p.Server对象,Server对象会逐个启动每个Service。
解锁账号,并注册钱包反馈事件。
启动RPC。(RPC 提供一种能通过网络或者其他I/O连接访问的能力,将在后续章节分析)
如果配置支持挖矿,则启动挖矿。
node.Wait()阻塞住程序,直到nodestop。
Node就好像一个组装工厂,把以太坊相关功能装配起来,连接了以太坊的前端和后端,启动RPC供远程调用,启动了P2P server跟网络中的其他节点建立联系,开始了console 供命令行操作。
Node模块并没有做任何跟区块链实质相关的事情,甚至它都不直接创建以太坊相关模块,而让它们封装成一个个的service,每个service自身自灭。就好比一个卖场,各个商家都可以来卖东西,但我不关心你们的死活,你们的死活也不影响我。
这给我们扩展以太坊客户端的功能提供一个思路,我们可以把扩展功能封装成一个Service,塞给Node。