1、下载SSD-Tensorflow-master直接解压到当前文件夹。
github下载地址:https://github.com/balancap/SSD-Tensorflow
2、打开checkpoints文件夹,将目录下的ssd_300_vgg.ckpt.zip直接解压到checkpoints目录下。
3、为方便调试,在notebooks中创建测试文件demo_test.py,复制ssd_notebook.ipynb中的代码(ipyb文件需使用Jupyter或者ipython打开运行),该py文件是完成对于单张图片的测试,复制代码如下:
# coding: utf-8
# In[1]:
import os
import math
import random
import numpy as np
import tensorflow as tf
import cv2
slim = tf.contrib.slim
# In[2]:
# %matplotlib inline
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
# In[3]:
import sys
sys.path.append('../')
# In[4]:
from nets import ssd_vgg_300, ssd_common, np_methods
from preprocessing import ssd_vgg_preprocessing
from notebooks import visualization
# In[5]:
# TensorFlow session: grow memory when needed. TF, DO NOT USE ALL MY GPU MEMORY!!!
gpu_options = tf.GPUOptions(allow_growth = True)
config = tf.ConfigProto(log_device_placement = False, gpu_options = gpu_options)
isess = tf.InteractiveSession(config = config)
## SSD 300 Model
# The SSD 300 network takes 300x300 image inputs. In order to feed any image, the latter is resize to this input shape (i.e.`Resize.WARP_RESIZE`). Note that even though it may change the ratio width / height, the SSD model performs well on resized images (and it is the default behaviour in the original Caffe implementation).
# SSD anchors correspond to the default bounding boxes encoded in the network. The SSD net output provides offset on the coordinates and dimensions of these anchors.
# In[6]:
# Input placeholder.
net_shape = (300, 300)
data_format = 'NHWC'
img_input = tf.placeholder(tf.uint8, shape = (None, None, 3))
# Evaluation pre-processing: resize to SSD net shape.
image_pre, labels_pre, bboxes_pre, bbox_img = ssd_vgg_preprocessing.preprocess_for_eval(
img_input, None, None, net_shape, data_format, resize = ssd_vgg_preprocessing.Resize.WARP_RESIZE)
image_4d = tf.expand_dims(image_pre, 0)
# Define the SSD model.
reuse = True if 'ssd_net' in locals() else None
ssd_net = ssd_vgg_300.SSDNet()
with slim.arg_scope(ssd_net.arg_scope(data_format=data_format)):
predictions, localisations, _, _ = ssd_net.net(image_4d, is_training = False, reuse = reuse)
# Restore SSD model.
ckpt_filename = 'E:\SSD-Tensorflow\SSD-Tensorflow-master\checkpoints/ssd_300_vgg.ckpt'
# ckpt_filename = '../checkpoints/VGG_VOC0712_SSD_300x300_ft_iter_120000.ckpt'
isess.run(tf.global_variables_initializer())
saver = tf.train.Saver()
saver.restore(isess, ckpt_filename)
# SSD default anchor boxes.
ssd_anchors = ssd_net.anchors(net_shape)
## Post-processing pipeline
# The SSD outputs need to be post-processed to provide proper detections. Namely, we follow these common steps:
# * Select boxes above a classification threshold;
# * Clip boxes to the image shape;
# * Apply the Non-Maximum-Selection algorithm: fuse together boxes whose Jaccard score > threshold;
# * If necessary, resize bounding boxes to original image shape.
# In[7]:
# Main image processing routine.
def process_image(img, select_threshold = 0.5, nms_threshold = .45, net_shape = (300, 300)):
# Run SSD network.
rimg, rpredictions, rlocalisations, rbbox_img = isess.run([image_4d, predictions, localisations, bbox_img],
feed_dict = {img_input: img})
# Get classes and bboxes from the net outputs.
rclasses, rscores, rbboxes = np_methods.ssd_bboxes_select(
rpredictions, rlocalisations, ssd_anchors,
select_threshold = select_threshold, img_shape = net_shape, num_classes = 21, decode = True)
rbboxes = np_methods.bboxes_clip(rbbox_img, rbboxes)
rclasses, rscores, rbboxes = np_methods.bboxes_sort(rclasses, rscores, rbboxes, top_k = 400)
rclasses, rscores, rbboxes = np_methods.bboxes_nms(rclasses, rscores, rbboxes, nms_threshold = nms_threshold)
# Resize bboxes to original image shape. Note: useless for Resize.WARP!
rbboxes = np_methods.bboxes_resize(rbbox_img, rbboxes)
return rclasses, rscores, rbboxes
# In[21]:
# Test on some demo image and visualize output.
path = 'E:\SSD-Tensorflow\SSD-Tensorflow-master\demo/'
image_names = sorted(os.listdir(path))
img = mpimg.imread(path + image_names[-1]) # Select test picture (-1, the last one)
rclasses, rscores, rbboxes = process_image(img)
# visualization.bboxes_draw_on_img(img, rclasses, rscores, rbboxes, visualization.colors_plasma)
visualization.plt_bboxes(img, rclasses, rscores, rbboxes)
4、运行demo_test.py。
5、参考
SSD-Tensorflow超详细解析【一】:加载模型对图片进行测试
Windows下TensorFlow+SSD遇到的问题