- 【课堂笔记】生成对抗网络 Generative Adversarial Network(GAN)
zyq~
机器学习笔记生成对抗网络人工智能机器学习概率论GAN
文章目录问题背景原理更新过程判别器生成器问题背景 一方面,许多机器学习任务需要大量标注数据,但真实数据可能稀缺或昂贵(如医学影像、稀有事件数据)。如何在少量数据中达到一个很好的训练效果是一个很重要的问题。 另一方面,传统生成模型(如变分自编码器VAE)生成的样本往往模糊或缺乏多样性,难以捕捉真实数据的复杂分布(如高分辨率图像、复杂文本等)。 生成式对抗网络(GAN)提出了用生成器(Gener
- PyTorch实战(7)——生成对抗网络(Generative Adversarial Network, GAN)实践详解
盼小辉丶
pytorch生成对抗网络生成模型生成式人工智能
PyTorch实战(7)——生成对抗网络实践详解0.前言1.生成对抗网络训练步骤2.准备训练数据2.1创建训练数据集2.2准备训练数据集3.构建生成对抗网络3.1判别器网络3.2生成器网络3.3模型训练3.4生成器的保存与加载小结系列链接0.前言生成对抗网络(GenerativeAdversarialNetwork,GAN)最早由IanGoodfellow于2014年提出,其中“对抗”一词指的是两
- 【黑盒对抗攻击】ICML 2021:SPADE: A Spectral Method for Black-Box Adversarial Robustness Evaluation
BIT可达鸭
▶深度学习-计算机视觉对抗攻击黑盒攻击模型可解释性人工智能神经网络
【黑盒对抗攻击】SPADE:ASpectralMethodforBlack-BoxAdversarialRobustnessEvaluation论文地址:代码地址:论文摘要:主要问题:主要思路:主要贡献:基本概念:谱图理论:对抗性鲁棒性的机器学习:对抗性鲁棒性评估:具体实现:整体框架:基于图的流形构造:ML模型的SPADE分数:距离度量:SPADE分数:输入数据样本的SPADE分数:SPADE分数
- Adversarial examples based on object detection tasks: A survey》论文阅读笔记
2301_80355452
目标检测论文阅读笔记
这是一篇关于目标检测任务中对抗样本攻击的综述论文。文章介绍了深度学习在计算机中的应用,以及对抗样本攻击的相关概念和方法,其中重点讨论了目标检测任务中基于分类和回归的对抗样本攻击,并对其他相关攻击方法进行了总结,最后得出结论并展望未来研究方向。1.引言深度学习背景:深度学习在处理图像或视频数据方面具有优势,广泛应用于计算机视觉任务,但由于深度网络的复杂结构,其存在脆弱性,容易受到攻击。目标检测任务:
- 快速读文章-Adversarial Training Towards Robust Multimedia Recommender System
无意识积累中
推荐系统深度学习计算机视觉人工智能
摘要:随着网络上多媒体内容的普及,迫切需要开发能够有效利用多媒体数据中丰富信号的推荐解决方案。由于深度神经网络在表征学习中的成功,多媒体推荐的最新进展主要集中在探索深度学习方法以提高推荐精度上。然而,迄今为止,很少有人研究多媒体表示的健壮性及其对多媒体推荐性能的影响。本文对多媒体推荐系统的鲁棒性进行了研究。通过使用最先进的推荐框架和深度图像特征,我们证明了整个系统的鲁棒性不强,因此,对输入图像进行
- 【论文阅读】Adversarial Training Towards Robust Multimedia Recommender System
hongjianMa
#多模态-论文阅读论文阅读推荐系统VBPR对抗深度学习多模态
AdversarialTrainingTowardsRobustMultimediaRecommenderSystem题目翻译:面向鲁棒多媒体推荐系统的对抗训练论文链接:点这里标签:多媒体推荐、对抗训练、推荐系统鲁棒性摘要随着多媒体内容在网络上的普及,迫切需要开发能够有效利用多媒体数据中丰富信息的推荐解决方案。由于深度神经网络在表示学习方面的成功,近期多媒体推荐的研究主要集中在探索深度学习方法以提
- 生成对抗网络(Generative Adversarial Networks GANs)
嘿丨嘿
生成对抗网络人工智能神经网络深度学习机器学习大数据
生成对抗网络(GenerativeAdversarialNetworks,GANs)是一种深度学习模型,由IanGoodfellow等人在2014年提出。GAN由两个神经网络组成:生成器(Generator)和判别器(Discriminator),它们通过对抗训练的方式进行优化。以下是详细介绍:1.基本概念生成器(G):生成器试图生成逼真的假样本(如图像),其输入通常是随机噪声(如高斯噪声或均匀噪
- 生成对抗网络(Generative Adversarial Network,简称GAN
俊星学长
生成对抗网络人工智能神经网络
生成对抗网络(GenerativeAdversarialNetwork,简称GAN)是一种深度学习模型,自2014年由IanGoodfellow等人提出以来,在人工智能领域得到了广泛应用。GAN通过两个神经网络——生成器(Generator)和判别器(Discriminator)的相互对抗来进行学习,从而生成逼真的数据。以下将详细解释GAN的基本原理及其训练过程。一、GAN的基本原理GAN的基本原
- 【机器学习】生成对抗网络 (Generative Adversarial Networks | GAN)
林九生
人工智能机器学习生成对抗网络人工智能
生成对抗网络(GenerativeAdversarialNetworks|GAN)介绍生成对抗网络(GenerativeAdversarialNetworks,简称GAN)是一种强大的深度学习模型,用于生成具有逼真感的图像、音频和文本等内容。GAN的核心理念是通过训练两个神经网络,生成器(Generator)和判别器(Discriminator),它们相互对抗、相互学习,以提高生成器生成数据的质量
- SentiGAN: Generating Sentimental Texts via Mixture Adversarial Networks论文笔记
catbird233
深度生成模型笔记
另一篇很好的解释:https://www.itcodemonkey.com/article/6378.html摘要在自然语言生成领域,不同情感标签的生成越来越受到人们的关注。近年来,生成性对抗网(gan)在文本生成方面取得了良好的效果。然而,gan产生的文本通常存在质量差、缺乏多样性和模式崩溃的问题。本文提出了一个新的框架--sentyan,它有多个生成器和一个多类判别器,以解决上述问题。在我们的
- 论文阅读笔记—— AdvFilter: Predictive Perturbation-aware Filtering against Adversarial Attack via Multi-d L
jessIoss
论文阅读笔记DeepFake论文阅读笔记
文章目录AdvFilter:PredictivePerturbation-awareFilteringagainstAdversarialAttackviaMulti-domainLearning背景贡献相关工作对抗性去噪防御对抗性训练防御其他对抗性防御方法一般图像去噪创新公式方法多域学习实验AdvFilter:PredictivePerturbation-awareFilteringagains
- 论文翻译:Universal and Transferable Adversarial Attacks on Aligned Language Models
CSPhD-winston-杨帆
LLMs-安全论文翻译语言模型人工智能自然语言处理
UniversalandTransferableAdversarialAttacksonAlignedLanguageModelshttps://arxiv.org/pdf/2307.15043v2通用且可转移的对抗性攻击对齐语言模型文章目录通用且可转移的对抗性攻击对齐语言模型摘要1引言2一个针对LLMs的通用攻击2.1产生肯定回应2.2贪婪坐标==梯度==搜索2.3通用多提示和多模型攻击3实验结
- 论文阅读:2023 arxiv Survey of Vulnerabilities in Large Language Models Revealed by Adversarial Attacks
CSPhD-winston-杨帆
论文阅读LLMs-安全论文阅读语言模型人工智能
总目录大模型安全相关研究:https://blog.csdn.net/WhiffeYF/article/details/142132328SurveyofVulnerabilitiesinLargeLanguageModelsRevealedbyAdversarialAttacks对抗性攻击揭示的大型语言模型漏洞调查https://arxiv.org/pdf/2310.10844速览大型语言模型中
- 【论文阅读】APMSA: Adversarial Perturbation Against Model Stealing Attacks
Bosenya12
论文阅读
摘要训练深度学习(DL)模型需要专有数据和计算密集型资源。为了收回训练成本,模型提供商可以通过机器学习即服务(MLaaS)将DL模型货币化。通常,该模型部署在云中,同时为付费查询提供可公开访问的应用程序编程接口(API)以获得好处。然而,模型窃取攻击对这种模型货币化计划构成了安全威胁,因为它们窃取了模型,而没有为未来的大量查询付费。具体来说,攻击者通过对目标模型进行查询,获取输入输出对,从而通过对
- GAN:Generative Adversarial Nets
「已注销」
经典论文生成对抗网络人工智能神经网络深度学习
文章信息题目:GAN:GenerativeAdversarialNets原文:https://arxiv.org/pdf/1406.2661.pdf代码:www.github.com/goodfeli/adversarial数据集:MNIST\CIFAR-10\theTorontoFaceDatabase一、简述 GAN,即对抗生成网络,最初由由IanGoodfellow于2014年提出,GAN
- GAN, Generative Adversarial Networks(生成式对抗网络)
一杯水果茶!
视觉与网络生成对抗网络人工智能神经网络
深度学习中最有趣的领域–GAN,GenerativeAdversarialNetworks(生成式对抗网络)GAN的基础概念GAN被“卷积网络之父”YannLeCun(杨立昆)誉为「过去十年计算机科学领域最有趣的想法之一」,是近年来火遍全网,AI研究者最为关注的深度学习技术方向之一。生成式对抗网络,简称GAN,是一种近年来大热的深度学习模型,该模型由两个基础神经网络即生成器神经网络(Generat
- Generative Adversarial Nets 论文解读
h161020716
论文精读图像处理gan生成对抗网络
GenerativeAdversarialNets论文解读generative生成adversarial对抗摘要Abstract提出了一个生成模型框架(framework),通过一个对抗的过程,同时训练两个模型:一个生成模型G,G是用来抓取数据的分布,对其进行建模;一个辨别模型D,D来辨别该样本是生成的,还是真实数据。G的目标是让D犯错,D的目标是来辨别出生成的数据(不被欺骗)。每个框架都类似于一
- 第05篇:对抗蒸馏(Adversarial Knowledge Distillation)——让学生“骗过”判别器的秘密
厚衣服_3
「知识蒸馏全解:从原理到实战」人工智能
目录对抗蒸馏简介背后的动机与挑战方法原理详解模型结构设计PyTorch实现(含判别器与训练循环)训练策略与技巧实验效果与分析进阶变体与未来趋势总结对抗蒸馏简介:将GAN思维引入KD知识蒸馏(KnowledgeDistillation,KD)中,学生模型模仿教师模型的输出,学习其“行为”或“特征”。传统KD偏重于逐点对齐,比如SoftTargetKD通过KL散度对齐softlogits,而Featu
- 论文阅读:2023 EMNLP Hidding the Ghostwriters: An Adversarial Evaluation of AI-Generated Student Essay De
CSPhD-winston-杨帆
论文阅读论文阅读人工智能
总目录大模型安全相关研究:https://blog.csdn.net/WhiffeYF/article/details/142132328文章目录Abstract(摘要)1Introduction(引言)5RelatedWork(相关工作)6Conclusion(结论)HiddingtheGhostwriters:AnAdversarialEvaluationofAI-GeneratedStude
- [论文精读]AI-Guardian: Defeating Adversarial Attacks using Backdoors
0x211
论文精读人工智能
会议名称:2023IEEESymposiumonSecurityandPrivacy(SP)发布链接:AI-Guardian:DefeatingAdversarialAttacksusingBackdoors|IEEEConferencePublication|IEEEXplore中文译名:AI-Guardian:利用后门防御对抗攻击阅读原因:网安相关,方班需要本文主要介绍了一种名为AI-Guar
- GAN开山之作--Generative Adversarial Nets
星空彡
深度学习机器学习神经网络
GAN开山之作–GenerativeAdversarialNets最近对GAN比较有兴趣,所以开个坑记录一下读论文学习的知识。这是本专栏的第一篇论文,所以笔者认为解析GAN的开山之作——GenerativeAdversarialNets[1]是非常有必要的。有关数学推导部分本文借鉴了深度之眼的b站发布的视频[2]。本文并不是逐字翻译,主要是写笔者对这篇论文的见解思考,其中难免会有错的地方,欢迎讨论
- AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks
EwanRenton
DLpaperAttnGANtext2imgCVPR2018DAMSM
《AttnGAN:Fine-GrainedTexttoImageGenerationwithAttentionalGenerativeAdversarialNetworks》是CVPR2018文本生成图像的文章,是StackGAN++的后续工作。Abstract在本文中作者提出了一个AttentionalGenerativeAd-versarialNetwork(AttnGAN),一种attent
- GAN(Generative Adversarial Network)—生成对抗网络
算法资料吧!
深度学习机器学习人工智能
GAN(GenerativeAdversarialNetwork)代表了深度学习中生成建模的尖端方法,通常利用卷积神经网络等架构。生成建模的目标是自主识别输入数据中的模式,使模型能够生成与原始数据集相似的新示例。本文涵盖了您需要了解的有关GAN、GAN架构、GAN的工作原理以及GAN模型类型等的所有信息。目录什么是生成对抗网络?GAN的类型GAN的架构GAN是如何工作的?生成对抗网络(GAN)的应
- 对抗性提示(adversarial prompts)
u013250861
LLMLLM
对抗性提示对抗性提示是提示工程中的一个重要主题,它可以帮助我们了解LLMs所涉及的风险和安全问题。对抗性提示也是一个重要的学科,可以识别这些风险并设计技术来解决这些问题。社区已经发现了许多不同类型的对抗性提示攻击,这些攻击涉及某种形式的提示注入。我们在下面提供这些示例的列表。当您构建LLMs时,重要的是要防止提示攻击,这些攻击可能会绕过安全防护栏并破坏模型的指导原则。我们将在下面介绍这方面的示例。
- Coverless Image Steganography Based on Generative Adversarial Network
旅人_Eric
无载体
基于生成对抗网络的无载体图像隐写技术摘要传统图像隐写技术:修改/嵌入到载体图像来传输秘密信息—>隐写工具很容易检测到载体图像的失真—>秘密信息的泄露无载体图像隐写技术:不修改载体图像就可以隐藏秘密信息。但存在容量低,质量差等问题。本文提出了一种基于生成对抗网络的无载体图像隐写技术,通过将秘密信息编码到载体图像中,用对抗来优化隐写图像的质量,同时很好的避开隐写分析工具的检测。介绍传统的隐写技术容易被
- 【论文精读】《Towards Deep Learning Models Resistant to Adversarial Attacks》
智算菩萨
深度学习人工智能
摘要本文探讨了深度学习模型在面对对抗性攻击时的脆弱性,并提出了一种基于鲁棒优化的方法来增强神经网络的对抗鲁棒性。通过鞍点优化框架,作者提供了对抗攻击和防御机制的统一视角,并在MNIST和CIFAR-10数据集上验证了其方法的有效性。本文的核心贡献包括:1)定义攻击模型和扰动集以优化模型参数;2)强调网络容量对对抗鲁棒性的影响;3)提出对抗训练作为提升模型鲁棒性的关键方法。本文为深度学习模型的对抗鲁
- 生成对抗网络(Generative Adversarial Network)原理与代码实战案例讲解
AI大模型应用之禅
AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
生成对抗网络(GenerativeAdversarialNetwork)原理与代码实战案例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming1.背景介绍1.1问题的由来生成对抗网络(GenerativeAdversarialNetwork,简称GAN)是由IanGoodfellow等人在2014年提出的一种新型神经网络架构。GAN的出现为生成模型领
- 【深度学习】常见模型-生成对抗网络(Generative Adversarial Network, GAN)
IT古董
人工智能深度学习机器学习深度学习生成对抗网络人工智能
生成对抗网络(GenerativeAdversarialNetwork,GAN)是一种深度学习模型框架,由IanGoodfellow等人在2014年提出。GAN由生成器(Generator)和判别器(Discriminator)两个对抗网络组成,通过彼此博弈的方式训练,从而生成与真实数据分布极为相似的高质量数据。GAN在图像生成、文本生成、数据增强等领域中有广泛应用。核心思想GAN的核心是两个神经
- python 代码实现了一个条件生成对抗网络(Conditional Generative Adversarial Network,CGAN),用于生成与给定的理化值相关的光谱数据
max500600
算法开发语言python生成对抗网络开发语言
importtensorflowastfimportnumpyasnpimportpandasaspdimportosimportmatplotlib.pyplotaspltfromsklearn.model_selectionimporttrain_test_splitfromtensorflow.keras.layersimportAdd,BatchNormalizationos.enviro
- 深度学习--对抗生成网络(GAN, Generative Adversarial Network)
Ambition_LAO
深度学习生成对抗网络
对抗生成网络(GAN,GenerativeAdversarialNetwork)是一种深度学习模型,由IanGoodfellow等人在2014年提出。GAN主要用于生成数据,通过两个神经网络相互对抗,来生成以假乱真的新数据。以下是对GAN的详细阐述,包括其概念、作用、核心要点、实现过程、代码实现和适用场景。1.概念GAN由两个神经网络组成:生成器(Generator)和判别器(Discrimina
- 312个免费高速HTTP代理IP(能隐藏自己真实IP地址)
yangshangchuan
高速免费superwordHTTP代理
124.88.67.20:843
190.36.223.93:8080
117.147.221.38:8123
122.228.92.103:3128
183.247.211.159:8123
124.88.67.35:81
112.18.51.167:8123
218.28.96.39:3128
49.94.160.198:3128
183.20
- pull解析和json编码
百合不是茶
androidpull解析json
n.json文件:
[{name:java,lan:c++,age:17},{name:android,lan:java,age:8}]
pull.xml文件
<?xml version="1.0" encoding="utf-8"?>
<stu>
<name>java
- [能源与矿产]石油与地球生态系统
comsci
能源
按照苏联的科学界的说法,石油并非是远古的生物残骸的演变产物,而是一种可以由某些特殊地质结构和物理条件生产出来的东西,也就是说,石油是可以自增长的....
那么我们做一个猜想: 石油好像是地球的体液,我们地球具有自动产生石油的某种机制,只要我们不过量开采石油,并保护好
- 类与对象浅谈
沐刃青蛟
java基础
类,字面理解,便是同一种事物的总称,比如人类,是对世界上所有人的一个总称。而对象,便是类的具体化,实例化,是一个具体事物,比如张飞这个人,就是人类的一个对象。但要注意的是:张飞这个人是对象,而不是张飞,张飞只是他这个人的名字,是他的属性而已。而一个类中包含了属性和方法这两兄弟,他们分别用来描述对象的行为和性质(感觉应该是
- 新站开始被收录后,我们应该做什么?
IT独行者
PHPseo
新站开始被收录后,我们应该做什么?
百度终于开始收录自己的网站了,作为站长,你是不是觉得那一刻很有成就感呢,同时,你是不是又很茫然,不知道下一步该做什么了?至少我当初就是这样,在这里和大家一份分享一下新站收录后,我们要做哪些工作。
至于如何让百度快速收录自己的网站,可以参考我之前的帖子《新站让百
- oracle 连接碰到的问题
文强chu
oracle
Unable to find a java Virtual Machine--安装64位版Oracle11gR2后无法启动SQLDeveloper的解决方案
作者:草根IT网 来源:未知 人气:813标签:
导读:安装64位版Oracle11gR2后发现启动SQLDeveloper时弹出配置java.exe的路径,找到Oracle自带java.exe后产生的路径“C:\app\用户名\prod
- Swing中按ctrl键同时移动鼠标拖动组件(类中多借口共享同一数据)
小桔子
java继承swing接口监听
都知道java中类只能单继承,但可以实现多个接口,但我发现实现多个接口之后,多个接口却不能共享同一个数据,应用开发中想实现:当用户按着ctrl键时,可以用鼠标点击拖动组件,比如说文本框。
编写一个监听实现KeyListener,NouseListener,MouseMotionListener三个接口,重写方法。定义一个全局变量boolea
- linux常用的命令
aichenglong
linux常用命令
1 startx切换到图形化界面
2 man命令:查看帮助信息
man 需要查看的命令,man命令提供了大量的帮助信息,一般可以分成4个部分
name:对命令的简单说明
synopsis:命令的使用格式说明
description:命令的详细说明信息
options:命令的各项说明
3 date:显示时间
语法:date [OPTION]... [+FORMAT]
- eclipse内存优化
AILIKES
javaeclipsejvmjdk
一 基本说明 在JVM中,总体上分2块内存区,默认空余堆内存小于 40%时,JVM就会增大堆直到-Xmx的最大限制;空余堆内存大于70%时,JVM会减少堆直到-Xms的最小限制。 1)堆内存(Heap memory):堆是运行时数据区域,所有类实例和数组的内存均从此处分配,是Java代码可及的内存,是留给开发人
- 关键字的使用探讨
百合不是茶
关键字
//关键字的使用探讨/*访问关键词private 只能在本类中访问public 只能在本工程中访问protected 只能在包中和子类中访问默认的 只能在包中访问*//*final 类 方法 变量 final 类 不能被继承 final 方法 不能被子类覆盖,但可以继承 final 变量 只能有一次赋值,赋值后不能改变 final 不能用来修饰构造方法*///this()
- JS中定义对象的几种方式
bijian1013
js
1. 基于已有对象扩充其对象和方法(只适合于临时的生成一个对象):
<html>
<head>
<title>基于已有对象扩充其对象和方法(只适合于临时的生成一个对象)</title>
</head>
<script>
var obj = new Object();
- 表驱动法实例
bijian1013
java表驱动法TDD
获得月的天数是典型的直接访问驱动表方式的实例,下面我们来展示一下:
MonthDaysTest.java
package com.study.test;
import org.junit.Assert;
import org.junit.Test;
import com.study.MonthDays;
public class MonthDaysTest {
@T
- LInux启停重启常用服务器的脚本
bit1129
linux
启动,停止和重启常用服务器的Bash脚本,对于每个服务器,需要根据实际的安装路径做相应的修改
#! /bin/bash
Servers=(Apache2, Nginx, Resin, Tomcat, Couchbase, SVN, ActiveMQ, Mongo);
Ops=(Start, Stop, Restart);
currentDir=$(pwd);
echo
- 【HBase六】REST操作HBase
bit1129
hbase
HBase提供了REST风格的服务方便查看HBase集群的信息,以及执行增删改查操作
1. 启动和停止HBase REST 服务 1.1 启动REST服务
前台启动(默认端口号8080)
[hadoop@hadoop bin]$ ./hbase rest start
后台启动
hbase-daemon.sh start rest
启动时指定
- 大话zabbix 3.0设计假设
ronin47
What’s new in Zabbix 2.0?
去年开始使用Zabbix的时候,是1.8.X的版本,今年Zabbix已经跨入了2.0的时代。看了2.0的release notes,和performance相关的有下面几个:
:: Performance improvements::Trigger related da
- http错误码大全
byalias
http协议javaweb
响应码由三位十进制数字组成,它们出现在由HTTP服务器发送的响应的第一行。
响应码分五种类型,由它们的第一位数字表示:
1)1xx:信息,请求收到,继续处理
2)2xx:成功,行为被成功地接受、理解和采纳
3)3xx:重定向,为了完成请求,必须进一步执行的动作
4)4xx:客户端错误,请求包含语法错误或者请求无法实现
5)5xx:服务器错误,服务器不能实现一种明显无效的请求
- J2EE设计模式-Intercepting Filter
bylijinnan
java设计模式数据结构
Intercepting Filter类似于职责链模式
有两种实现
其中一种是Filter之间没有联系,全部Filter都存放在FilterChain中,由FilterChain来有序或无序地把把所有Filter调用一遍。没有用到链表这种数据结构。示例如下:
package com.ljn.filter.custom;
import java.util.ArrayList;
- 修改jboss端口
chicony
jboss
修改jboss端口
%JBOSS_HOME%\server\{服务实例名}\conf\bindingservice.beans\META-INF\bindings-jboss-beans.xml
中找到
<!-- The ports-default bindings are obtained by taking the base bindin
- c++ 用类模版实现数组类
CrazyMizzz
C++
最近c++学到数组类,写了代码将他实现,基本具有vector类的功能
#include<iostream>
#include<string>
#include<cassert>
using namespace std;
template<class T>
class Array
{
public:
//构造函数
- hadoop dfs.datanode.du.reserved 预留空间配置方法
daizj
hadoop预留空间
对于datanode配置预留空间的方法 为:在hdfs-site.xml添加如下配置
<property>
<name>dfs.datanode.du.reserved</name>
<value>10737418240</value>
 
- mysql远程访问的设置
dcj3sjt126com
mysql防火墙
第一步: 激活网络设置 你需要编辑mysql配置文件my.cnf. 通常状况,my.cnf放置于在以下目录: /etc/mysql/my.cnf (Debian linux) /etc/my.cnf (Red Hat Linux/Fedora Linux) /var/db/mysql/my.cnf (FreeBSD) 然后用vi编辑my.cnf,修改内容从以下行: [mysqld] 你所需要: 1
- ios 使用特定的popToViewController返回到相应的Controller
dcj3sjt126com
controller
1、取navigationCtroller中的Controllers
NSArray * ctrlArray = self.navigationController.viewControllers;
2、取出后,执行,
[self.navigationController popToViewController:[ctrlArray objectAtIndex:0] animated:YES
- Linux正则表达式和通配符的区别
eksliang
正则表达式通配符和正则表达式的区别通配符
转载请出自出处:http://eksliang.iteye.com/blog/1976579
首先得明白二者是截然不同的
通配符只能用在shell命令中,用来处理字符串的的匹配。
判断一个命令是否为bash shell(linux 默认的shell)的内置命令
type -t commad
返回结果含义
file 表示为外部命令
alias 表示该
- Ubuntu Mysql Install and CONF
gengzg
Install
http://www.navicat.com.cn/download/navicat-for-mysql
Step1: 下载Navicat ,网址:http://www.navicat.com/en/download/download.html
Step2:进入下载目录,解压压缩包:tar -zxvf navicat11_mysql_en.tar.gz
- 批处理,删除文件bat
huqiji
windowsdos
@echo off
::演示:删除指定路径下指定天数之前(以文件名中包含的日期字符串为准)的文件。
::如果演示结果无误,把del前面的echo去掉,即可实现真正删除。
::本例假设文件名中包含的日期字符串(比如:bak-2009-12-25.log)
rem 指定待删除文件的存放路径
set SrcDir=C:/Test/BatHome
rem 指定天数
set DaysAgo=1
- 跨浏览器兼容的HTML5视频音频播放器
天梯梦
html5
HTML5的video和audio标签是用来在网页中加入视频和音频的标签,在支持html5的浏览器中不需要预先加载Adobe Flash浏览器插件就能轻松快速的播放视频和音频文件。而html5media.js可以在不支持html5的浏览器上使video和audio标签生效。 How to enable <video> and <audio> tags in
- Bundle自定义数据传递
hm4123660
androidSerializable自定义数据传递BundleParcelable
我们都知道Bundle可能过put****()方法添加各种基本类型的数据,Intent也可以通过putExtras(Bundle)将数据添加进去,然后通过startActivity()跳到下一下Activity的时候就把数据也传到下一个Activity了。如传递一个字符串到下一个Activity
把数据放到Intent
- C#:异步编程和线程的使用(.NET 4.5 )
powertoolsteam
.net线程C#异步编程
异步编程和线程处理是并发或并行编程非常重要的功能特征。为了实现异步编程,可使用线程也可以不用。将异步与线程同时讲,将有助于我们更好的理解它们的特征。
本文中涉及关键知识点
1. 异步编程
2. 线程的使用
3. 基于任务的异步模式
4. 并行编程
5. 总结
异步编程
什么是异步操作?异步操作是指某些操作能够独立运行,不依赖主流程或主其他处理流程。通常情况下,C#程序
- spark 查看 job history 日志
Stark_Summer
日志sparkhistoryjob
SPARK_HOME/conf 下:
spark-defaults.conf 增加如下内容
spark.eventLog.enabled true spark.eventLog.dir hdfs://master:8020/var/log/spark spark.eventLog.compress true
spark-env.sh 增加如下内容
export SP
- SSH框架搭建
wangxiukai2015eye
springHibernatestruts
MyEclipse搭建SSH框架 Struts Spring Hibernate
1、new一个web project。
2、右键项目,为项目添加Struts支持。
选择Struts2 Core Libraries -<MyEclipes-Library>
点击Finish。src目录下多了struts