- 点云配准(点云拼接)论文综述
点云SLAM
点云数据处理技术点云数据处理点云配准DeepICPICP深度学习配准方法特征匹配
点云配准(点云拼接)论文综述1.引言点云配准(PointCloudRegistration)是三维计算机视觉与机器人感知领域的核心任务,其目标是通过几何变换将多个点云对齐至统一坐标系,形成完整的场景表示。该技术广泛应用于自动驾驶、增强现实、工业检测、医学影像等领域。随着传感器技术(如LiDAR、RGB-D相机)的进步与深度学习的发展,点云配准方法经历了从传统优化算法到数据驱动模型的演变。本文系统综
- Qwen2.5 技术报告
三谷秋水
大模型机器学习人工智能语言模型机器学习人工智能
24年12月来自通义千问的论文“Qwen2.5TechnicalReport”。本报告介绍Qwen2.5,这是一系列全面的大语言模型(LLM),旨在满足多样化的需求。与之前的迭代相比,Qwen2.5在预训练和后训练阶段都有显著的改进。在预训练方面,将高质量的预训练数据集从之前的7万亿个token扩展到18万亿个token,为常识、专家知识和推理能力提供坚实的基础。在后训练方面,用超过100万个样本
- 基于Python的PDF文件自动下载爬虫技术——详细教程与实例
Python爬虫项目
2025年爬虫实战项目pythonpdf爬虫开发语言信息可视化
1.引言在信息时代,许多网站提供了PDF格式的文档,如新闻报道、学术论文、合同文件等。对于科研人员或数据分析师来说,批量下载和分析这些PDF文件是非常有用的。Python作为一种高效且易于学习的编程语言,在网络数据抓取(即爬虫技术)方面拥有强大的库和工具,使得自动化下载网站中的PDF文件变得十分简单。在本篇博客中,我们将详细介绍如何使用Python爬虫技术抓取网页中的所有PDF文件,并自动下载到本
- 【AI论文】S*: 针对代码生成的测试时缩放方法
东临碣石82
人工智能
摘要:在多个领域中,增加大型语言模型(LLM)测试时的计算量已展现出广阔前景,但在代码生成方面,尽管数学领域已对此进行了深入研究,该方向仍探索不足。在本文中,我们提出了S,这是首个混合测试时缩放框架,能显著提升生成代码的覆盖率和选择准确性。S在现有的并行缩放范式基础上引入了顺序缩放,以突破性能极限。此外,它还利用了一种新颖的选择机制,该机制能自适应地生成用于成对比较的区别性输入,并结合执行基础信息
- 用Python爬取B站视频的实践与技术分析(通俗易懂)
笔记python开发语言c语言课程设计前端
标题:用Python爬取B站视频的实践与技术分析摘要:本论文介绍了如何使用Python编写网络爬虫程序来爬取B站(哔哩哔哩)视频的实际步骤和技术细节。通过发送网络请求和解析网页内容,我们可以获取到视频的标题和链接。本文将详细解释爬取B站视频的过程,并提供通俗易懂的代码示例,旨在帮助读者理解爬虫技术并能够自己动手实践。引言:随着网络视频的普及,越来越多的用户在B站上观看和分享视频内容。然而,有时我们
- Amazon Aurora深度探索(一)
仲培艺
数据库Amazon-Aurora
【导语】Amazon的Aurora自从问世,就备受关注,其性能和实现架构是被关注的热点。2017年,Amazon发表了一篇论文,披露其实现的一些技术细节。本文在此背景下,对Aurora系统的实现从整体架构、存储、事务处理三个方面进行深入探讨,并从数据库内核技术实现的角度对Aurora做了一定的推测。2017年,Amazon在SIGMOD上发表了论文《AmazonAurora:DesignConsi
- 【动手学运动规划】2.6 Reeds Shepp曲线
自动驾驶小白说
动手学运动规划自动驾驶算法运动规划
我出来打工,我不惦记钱,我惦记什么?—武林外传黄豆豆代码及环境配置:请参考环境配置和代码运行!ReedsShepp,通常简称为RS曲线,是一种用于路径规划的算法,由J.A.Reeds和L.A.Shepp在1990年的论文《OptimalPathsforaCarThatGoesBothForwardsandBackwards》中提出。该算法主要用于描述机器人或车辆在平面上的运动轨迹,特别是在需要考虑
- Word——论文排版技巧总结
Irving.Gao
Win10实用软件word
Word毕业论文排版:最详细教学更新题注Ctrl+A全选;F9更新。快速加入参考文献关联Word与Zotero参考文献引用格式:选择带有numeric的:
- Word不会排版!看这里,3分钟教你学会30个排版技巧
自学职场技能
word办公word排版word技巧
时光如流水,很快又要到一年一度的毕业季了。毕业论文这个让人爱恨兼备的小妖精又要出来兴风作浪了,一班几十上百人的论文排版还真是“各有千秋”。今天小编给大家分享一些Word排版技巧,希望可以帮助到大家哦!一:段落排版在写论文的时候,因为篇幅过长,可能大家需要对一些段落进行调整。键盘上有上下箭头的按键。先选中需要段落,然后按着【Shift+Alt+↑】或【Shift+Alt+↓】。向上的箭头就是将段落向
- 论文解读(全头皮重建方向):3DCMM
FLOWVERSE
3d3D人头补全
从面部到完整头部:3DCMM的技术原理解析引言在计算机图形学和人体工学领域,3D头部模型的需求日益增加。无论是虚拟化身的创建还是头盔的个性化设计,仅有面部模型往往不足以满足要求,完整的头部几何(包括头皮)才是关键。传统的3D可变形模型(3DMM)多集中于面部重建,头皮区域因数据稀缺和技术限制常被忽略。2022年发表于VRCAI’22的论文《3DCMM:3DComprehensiveMorphabl
- python阈值计算_基于Python的阈值分割算法实现(二)
weixin_39872222
python阈值计算
引言前文我们讨论了关于实现OTSU算法的问题,该算法主要是针对于特征值阈值的确定,这个值可以用于论文讨论和说明。但实际情况中,我们需要对图像进行各种滤波,预处理,那么此时我们可能需要一种带坐标和投影的分割结果,本文就将带大家实现对图像进行阈值分割后进行结果的输出。本文代码共包含了四种不同的分割算法,分别是三角阈值分割法、Riddler-Calvard分割法、自适应局部均值分割法、自适应局部高斯分割
- python 语音转文本中文——DeepSpeech
drebander
python开发语言DeepSpeech
DeepSpeech简介与音频转文本实践DeepSpeech是由Mozilla开发的一种开源语音识别引擎,基于深度学习技术,采用端到端架构,可以高效地将语音转换为文本。其核心算法受BaiduDeepSpeech论文启发,使用RecurrentNeuralNetwork(RNN)处理语音数据。一、DeepSpeech的原理1.核心组件声学模型:将语音波形转换为概率分布表示。语言模型:对语音识别结果进
- 【PyTorch项目实战】图像分割 —— U-Net:Semantic segmentation with PyTorch
胖墩会武术
深度学习PyTorch项目实战pythonunetpytorch
文章目录一、项目介绍二、项目实战2.1、环境搭建2.1.1、下载源码2.1.2、下载预训练模型2.1.3、下载训练集2.2、环境配置2.3、代码优化+架构优化2.4、模型预测:predict.pyU-Net是一种用于生物医学图像分割的卷积神经网络架构,最初由OlafRonneberger等人于2015年提出。论文:U-Net:ConvolutionalNetworksforBiomedicalIm
- 【matlab数学建模项目】matlab实现HSV空间的森林火灾监测系统——森林火灾监测系统
阿里matlab建模师
matlab精品科研项目数学建模matlab开发语言科研项目算法美赛全国大学生数学建模竞赛
MATLAB实现HSV空间森林火灾监测系统1、项目下载:本项目完整讲解和全套实现源码见下资源,有需要的朋友可以点击进行下载说明文档(点击下载)全套源码+学术论文基于MATLAB的HSV空间森林火灾监测系统的技术实现与应用-机器学习-HSV色彩空间-图像处理-森林火灾监测-matlab更多阿里matlab精品数学建模项目可点击下方文字链接直达查看:matlab精品数学建模项目合集(算法+源码+论文)
- Deepseek辅助写毕业论文,学校要AIGC了,什么工具可以查AI率?
我是宝库
AIGC人工智能AI写作学习方法经验分享深度学习chatgpt
Deepseek最近真的是爆火,很多同学在写论文的时候可能会用到Deepseek辅助写作。但是现在无论是投稿还是学校的毕业论文,基本上都是要检测论文的AIGC率了。也就是论文的AI率,如果论文AI率不达标,是会被认定为学术不端的。现在有专门检查查论文AIGC率的工具了,无论是中文和英文都可以检测。如果自己有用Deepseek或者其他AI工具协助论文写作,不确定自己的论文是否有AI风险,可以先用检测
- 论文学习3:深度学习增强的光声成像(PAI)的最新进展(综述)
superace7911
基于机器学习的光声图像处理机器学习图像处理
原文链接有空可以细看,这里中列出了文中提到的部分研究结果写作大纲1.引言光声成像(PAI)的介绍,它结合了光学和超声成像的优点,为生物医学成像提供了一种有前景的模态。深度学习(DL)在解决PAI中存在的技术限制(如硬件限制、生物特征信息缺乏等)方面的潜力。2.DL方法的原理介绍DL的子集:监督学习、无监督学习和强化学习。详细说明代表性DL架构:卷积神经网络(CNN)、U-形神经网络(U-Net)和
- Pytorch实现之混合成员GAN训练自己的数据集
这张生成的图像能检测吗
优质GAN模型训练自己的数据集pytorch生成对抗网络人工智能python深度学习机器学习计算机视觉
简介简介:提出一种新的MMGAN架构,使用常见生成器分布的混合对每个数据分布进行建模。由于生成器在多个真实数据分布之间共享,高度共享的生成器(通过混合权重反映)捕获分布的公共方面,而非共享的生成器捕获独特方面。论文题目:MIXEDMEMBERSHIPGENERATIVEADVERSARIALNETWORKS(混合成员生成对抗网络)会议:IEEEInternationalConferenceonIm
- 9、论文阅读:无监督的感知驱动深水下图像增强
Maker~
图像增强论文阅读深度学习计算机视觉
Perception-DrivenDeepUnderwaterImageEnhancementWithoutPairedSupervision前言引言相关工作UIE模型基于非物理模型基于物理模型基于深度学习质量度量在图像增强中的应用方法论问题表述PQR模型PDD网络生成器损失函数实验A.数据集B.训练细节C.实验结果**PQR模型结果****定量UIE结果****定量UIE结果****可视化增强结
- Pytorch实现论文:基于多尺度融合生成对抗网络的水下图像增强
这张生成的图像能检测吗
GAN系列pytorch生成对抗网络人工智能深度学习神经网络计算机视觉python
简介简介:提出了一种新型的水下图像增强算法,基于多尺度融合生成对抗网络,名为UMSGAN,以解决低对比度和颜色失真的问题。首先经过亮度的处理,将处理后的图像输入设计的MFFEM模块和RM模块生成图像。该算法旨在适应各种水下场景,提供颜色校正和细节增强。论文题目:Underwaterimageenhancementbasedonmultiscalefusiongenerativeadversaria
- 文献检索能力:Grok 3 beta仍有欠缺,但可能是目前免费大模型里最强的
stereohomology
大语言模型对比人工智能Grok3beta
各种大模型之所以在这方面一直踟蹰不前,推测主要是为了回避知识产权纠纷方面的原因。但回避知识产权问题不应该是将doi和论文任意对应的借口。测试了某个文献问题。推荐的论文和doi无法对应。我表达了不满之后,发现进一步推荐的doi居然是真实的了,虽然跟文献还是不太容易对应,但相比之下,已经有接近50%的真实度。其它大模型碰到这个问题则全是瞎扯。
- 论文修改阶段如何与导师沟通
kexiaoya2013
论文笔记论文阅读
在论文修改过程中,导师的指导至关重要。那么,在修改阶段如何与导师沟通呢?一、主动预约在沟通前,提前通过邮件、学术沟通工具等来预约时间,并简要说明自己的沟通需求。在首次沟通时,重点询问导师对论文的整体看法,后续再来聚焦具体问题。二、充分准备在准备过程中,列出问题的清单,并按照优先级排序,对不确定的内容附上自己的见解。提供修订模式的文档或新旧版本对比,方便导师快速了解论文的具体变化。面谈时要准备好纸质
- 架构师论文《论湖仓一体架构及其应用》
pccai-vip
架构软考论文
软考论文-系统架构设计师摘要作为某省级商业银行数据中台建设项目技术负责人,我在2020年主导完成了从传统数据仓库向湖仓一体架构的转型。针对日益增长的支付流水、用户行为埋点及信贷审核影像文件等多模态数据处理需求,原有系统存在存储成本激增、实时分析能力不足等问题。新平台需整合12个核心业务系统数据资源,建设支持实时反欺诈、客户画像分析的高性能数据底座。本项目采用Iceberg+Spark架构实现湖仓一
- 降重避坑指南:为什么你的AIGC率总超标?
Diamonds888
AIGC人工智能毕业设计毕设AI写作
误区分析:误区1:直接复制AI生成的“口语化”内容;误区2:参考文献随意编造,缺乏权威来源;误区3:忽略图表公式的学术规范性。合规方案:AiPassPaper论文工具学术化改写:使用工具的「专业模式」替换AI常见句式;文献补充:一键插入知网关联参考文献(近5年占比≥60%);退费兜底:知网/维普/Turnitin超标均可申请退费。案例数据:“测试100份论文初稿,使用工具后平均AIGC率下降72%
- AI生成内容带来的核心挑战引发人机共治的必要提前
临水逸
人工智能
一、AI生成内容带来的核心挑战信息真实性危机斯坦福研究显示,AI生成虚假信息的速度是人类创作的6倍,如近期AI伪造的"拜登紧急状态"语音导致金融市场波动医疗领域已出现AI生成的伪科学内容,某健康论坛中23%的"患者经验分享"被证实为AI虚构数据质量劣化Google索引数据显示,2023年新网页中38%为AI生成,其中重复率高达57%学术领域发现,arXiv预印本平台AI代写论文占比已达12%,引发
- 论文阅读笔记1——DARTS:Differentiable Architecture Search可微分架构搜索(一)(论文翻译学习)
fuhao7i
论文阅读笔记深度学习人工智能机器学习算法计算机视觉
DARTS:DifferentiableArchitectureSearch可微分架构搜索(一)DARTS:DifferentiableArchitectureSearch(一)ABSTRACT摘要1.INTRODUCTION介绍2.可微的结构搜索加油加油!如果你感觉你现在很累,那么恭喜你,你现在正在走上坡路!让我们一起加油!欢迎关注我的讲解视频,让我们一起学习:Bilibili主页:https:
- 【2024国赛A题】A题“板凳龙” 闹元宵思路+代码+论文
Matlab领域
数学建模matlab2024国赛A题
订阅本专栏,认真钻研,保省级及以上奖项!若无获奖,本博主免费提供任意两份本博客初级版专栏代码!欢迎来到本博客❤️❤️博主优势:精通Matlab各领域,且各项目代码较全,可供指导交流。⛳️座右铭:行百里者,半于九十。⛄一、思路与参考代码点击下方,即可订阅专栏2024年高教社杯全国大学生数学建模竞赛(国赛)1:订阅此专栏,即可见解题思路+参考代码+参考论文+一次付费+持续更新!2:订阅此专栏,即可获得
- 使用Diffusion Models进行图像超分辩重建
沉迷单车的追风少年
DiffusionModels与深度学习人工智能计算机视觉超分辨率重建AIGC深度学习
DiffusionModels专栏文章汇总:入门与实战前言:图像超分辨率重建是一个经典CV任务,其实LR(低分辨率)和HR(高分辨率)图像仅在高频细节上存在差异。通过添加适当的噪声,LR图像将变得与其HR对应图像无法区分。这篇博客介绍一种方式巧妙利用这个规律使用DiffusionModels进行图像超分辩重建任务。目录贡献概述动机方法详解模型训练论文贡献概述这项研究提出了一种基于扩散逆过程的新图像
- 【毕业设计之python系列】基于Flask的在线音乐网设计与实现
小杰911
毕业设计flaskpython课程设计
基于Flask的在线音乐网设计与实现摘要本论文旨在通过使用Python的Web框架Flask,设计和实现一个具有完整功能的在线音乐网站。该网站包括用户注册、登录、注销、歌曲上传、编辑、删除、歌单创建、编辑、删除、评论、搜索、音乐播放等功能,并针对不同用户角色(如普通用户、管理员)实现了不同的权限管理。同时,本论文还介绍了如何使用第三方API(如网易云音乐API)获取歌曲信息等技术实现。在设计上,本
- 2024-2025最新软考系统架构设计师的复习资料教材,解决如何快速高效通过该考试,试题的重点和难点在哪里?案例分析题和论文题的要点和踩坑点分析
九张算数
数字工匠系统架构学习方法职场和发展运维开发pat考试考研面试
目录引言考试概述考试结构考试内容复习策略制定复习计划学习资源知识点详解系统架构基础设计原则与模式系统分析与设计软件开发过程项目管理系统集成性能与优化安全性设计新兴技术试题解析选择题案例分析题论文题重点与难点分析模拟试题与答案参考资料总结引言系统架构设计师考试是软考高级资格考试之一,旨在考察考生在系统架构设计领域的综合能力和专业知识。通过该考试可以获得系统架构设计师资格认证,对职业发展有重要意义。本
- 架构设计(15)面向服务架构SOA论文赏析
CoderIsArt
架构设计研究架构SOA
题目:论面向服务架构设计以及应用摘要本文以我参与的某公司业务上云项目为例,论述了面向服务架构设计方法和实现过程.该项目的目标是构建以某酒厂生产的白酒产品为主的电子商城,实现该白酒的线下营销升级为在线营销的战略目标,包括:线上抢购,支付,线下配送,防伪溯源等一系列电子商务功能.在此项目中,我作为系统架构师及主要管理人员,参与了该项目的需求开发\系统架构设计等主导工作.SOA将应用程序的不同功能单元,
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数