- svm python 模型绘图_1SVM处理数据并绘图
张炜大师傅
svmpython模型绘图
爬虫Python基础、数据分析扩展包Numpy、pandas、matplotlib,Python读取MySQL数据,Python爬虫及Scrapy框架,无监督机器学习算法聚类分析等,以及案例:互联网金融行业客户价值分析等。机器学习机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有
- 机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
promptllm人工智能
基础算法常见面试篇1.1过拟合和欠拟合常见面试篇一、过拟合和欠拟合是什么?二、过拟合/高方差(overfiting/highvariance)篇2.1过拟合是什么及检验方法?2.2导致过拟合的原因是什么?2.3过拟合的解决方法是什么?三、欠拟合/高偏差(underfiting/highbias)篇3.1欠拟合是什么及检验方法?3.2导致欠拟合的原因是什么?3.3过拟合的解决方法是什么?1.2Bat
- 从System Prompt来看GPT-3.5到GPT-4的进化
herosunly
大模型systempromptgpt-3chatgptgpt4gpt4o
大家好,我是herosunly。985院校硕士毕业,现担任算法t研究员一职,热衷于机器学习算法研究与应用。曾获得阿里云天池比赛第一名,CCF比赛第二名,科大讯飞比赛第三名。拥有多项发明专利。对机器学习和深度学习拥有自己独到的见解。曾经辅导过若干个非计算机专业的学生进入到算法行业就业。希望和大家一起成长进步。 本文主要介绍了从SystemPrompt来看GPT-3.5到GPT-4的进化之路,希
- R语言机器学习算法实战系列(十九)特征选择之Monte Carlo算法(Monte Carlo Feature Selection)
生信学习者1
R语言机器学习实战r语言机器学习算法数据分析数据挖掘数据可视化人工智能
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者!文章目录介绍原理步骤下载数据加载R包导入数据数据预处理数据分割MCFS运行MCFS-ID过程混淆矩阵重要特征的RI最小阈值距离与共同部分收敛特征重要性排序选择重要特征构建特征依赖图提取重要特征基于重要特征构建随机森林模型混淆矩阵评估模型AUC曲线刻画模型在训练和测试数据集的表现总结系统信息介绍特征选择(FeatureSel
- F#语言的图形用户界面
沈霁晨
包罗万象golang开发语言后端
F#语言的图形用户界面开发引言随着软件开发的日益复杂化,图形用户界面(GUI)在现代应用程序中的重要性不可忽视。它提供了一种直观的方式,使用户能够与应用程序进行交互。F#语言作为一种函数式编程语言,近年来在开发领域越来越受到关注,尤其是在数据分析和机器学习领域。但F#同样能够用于图形用户界面的开发,尤其是结合.NET平台及其丰富的库。本文将深入探讨F#语言在图形用户界面开发中的应用,包括常用的框架
- 【Springboot】——响应与分层解耦架构
Y小夜
架构springboot后端javaspring
博主现有专栏:C51单片机(STC89C516),c语言,c++,离散数学,算法设计与分析,数据结构,Python,Java基础,MySQL,linux,基于HTML5的网页设计及应用,Rust(官方文档重点总结),jQuery,前端vue.js,Javaweb开发,设计模式、Python机器学习、Springboot等主页链接:Y小夜-CSDN博客目录响应响应数据✨@ResponseBody✨G
- 如何学习爬虫技术:从入门到实践的全面指南
CodeJourney.
学习爬虫
一、引言在当今数字化时代,网络上的数据量呈爆炸式增长,能够高效地获取和处理这些数据变得愈发重要。爬虫技术作为一种从网页中自动提取信息的手段,在各个领域都有着广泛的应用,无论是数据分析、机器学习的数据集构建,还是市场调研、价格监测等商业场景,掌握爬虫技术都能为你打开一扇获取丰富信息资源的大门。然而,对于初学者来说,面对琳琅满目的工具和复杂的网络环境,可能会感到无从下手。本文将带你逐步深入了解爬虫技术
- 将机器学习算法移植到低端MCU上的实用指南
为也科技
AI边缘计算机器学习算法单片机嵌入式硬件pythonc语言物联网
将机器学习算法移植到低端MCU上的实用指南在物联网(IoT)和边缘计算迅猛发展的今天,将智能功能嵌入到资源有限的低端单片机(MicrocontrollerUnit,MCU)上,已经成为许多开发者和工程师追求的目标。然而,这一过程充满挑战,但只要掌握正确的方法,也能在低端MCU上实现高效的机器学习应用。本文将以具体的案例为例,逐步讲解每个步骤的实际操作,包括所需的工具、命令和代码示例,帮助开发者成功
- Python中实现多层感知机(MLP)的深度学习模型
Echo_Wish
Python笔记从零开始学Python人工智能python深度学习开发语言
深度学习已经成为机器学习领域的一个热门话题,而多层感知机(MLP)是最基础的深度学习模型之一。在这篇教程中,我将向你展示如何使用Python来实现一个简单的MLP模型。什么是多层感知机(MLP)?多层感知机(MLP)是一种前馈神经网络,它包含一个输入层、一个或多个隐藏层以及一个输出层。每个层都由一系列的神经元组成,神经元之间通过权重连接。MLP能够学习输入数据的非线性特征,因此在复杂问题的建模中非
- AI Agent:深度解析与未来展望
码事漫谈
c++人工智能
一、AIAgent的前世:从概念到萌芽(一)早期探索AIAgent的概念可以追溯到20世纪50年代,早期的AI研究主要集中在简单的规则系统上,这些系统的行为是确定性的,输出由输入决定。随着时间的推移,AI逐渐能够处理不确定性,1990年代机器学习的兴起为AIAgent的发展奠定了基础,神经网络技术的突破为深度学习的发展提供了可能。(二)技术突破2017年后,大语言模型(LLM)的出现推动了AIAg
- 【深度学习基础】线性神经网络 | softmax回归的简洁实现
Francek Chen
PyTorch深度学习深度学习神经网络回归softmax人工智能
【作者主页】FrancekChen【专栏介绍】⌈⌈⌈PyTorch深度学习⌋⌋⌋深度学习(DL,DeepLearning)特指基于深层神经网络模型和方法的机器学习。它是在统计机器学习、人工神经网络等算法模型基础上,结合当代大数据和大算力的发展而发展出来的。深度学习最重要的技术特征是具有自动提取特征的能力。神经网络算法、算力和数据是开展深度学习的三要素。深度学习在计算机视觉、自然语言处理、多模态数据
- 【强化学习】Unity ML-Agents框架
大雨淅淅
人工智能unity游戏引擎机器学习人工智能深度学习学习
目录一、UnityML-Agents简介二、安装与配置三、基础使用四、关键技术点五、进阶技巧与案例分析六、学习资源七、常见问题与解决方案八、实战项目与案例研究九、未来展望与发展趋势十、结语一、UnityML-Agents简介UnityML-Agents是一个由UnityTechnologies开发的开源项目,它允许开发者利用机器学习技术来训练虚拟环境中的智能代理(Agent)。无论是希望创建更逼真
- AIGC视频生成模型:Meta的Emu Video模型
好评笔记
#MetaAIGC-视频AIGC机器学习人工智能transformer论文阅读深度学习面试
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍Meta的视频生成模型EmuVideo,作为Meta发布的第二款视频生成模型,在视频生成领域发挥关键作用。优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录论文摘要引言相关工作文本到图像(T2I)扩散模型视频生成/预测文本到视频(T2V)生成分解生成方法预备知识EmuVideo生成步骤图
- 【Python】已解决ModuleNotFoundError: No module named ‘tensorflow‘
屿小夏
pythontensorflowneo4j
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 通过python对excel进行数据分析和可视化
新叶猫长那么可爱干什么
python的学习python
importpandasaspdimportmatplotlib.pyplotaspltimportseabornassnsfile_path="C:\\Users\\86138\\Desktop\\book_list-计算机-机器学习-linux-android-数据库-互联网.xlsx"data=pd.read_excel(file_path)need_data=data[['书名','评分'
- 【Python】已解决:ModuleNotFoundError: No module named ‘tensorflow‘
屿小夏
pythontensorflowneo4j
个人简介:某不知名博主,致力于全栈领域的优质博客分享|用最优质的内容带来最舒适的阅读体验!文末获取免费IT学习资料!文末获取更多信息精彩专栏推荐订阅收藏专栏系列直达链接相关介绍书籍分享点我跳转书籍作为获取知识的重要途径,对于IT从业者来说更是不可或缺的资源。不定期更新IT图书,并在评论区抽取随机粉丝,书籍免费包邮到家AI前沿点我跳转探讨人工智能技术领域的最新发展和创新,涵盖机器学习、深度学习、自然
- 智能体在环境中学习和作出决策
由数入道
人工智能人工智能智能体深度学习
一、概述强化学习是一类通过与环境交互获取反馈并不断优化决策策略的机器学习方法。与监督学习和无监督学习不同,强化学习直接面向序列决策问题,核心目标是找到使智能体(Agent)在环境中获得最大化累积奖励(CumulativeReward)的策略。其理论基础通常以马尔可夫决策过程(MarkovDecisionProcess,MDP)为框架。MDP的五元组通常表示为(S,A,P,R,γ)(S,A,P,R,
- 宇宙规律对可转移量子强化学习架构的启示
AI天才研究院
计算机软件编程原理与应用实践javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
第1章引言:宇宙规律与量子强化学习架构1.1问题背景宇宙规律是指宇宙中普遍存在的自然规律,如物理学中的万有引力定律、量子力学中的不确定性原理等。这些规律对宇宙的运行和演化起着决定性的作用。随着科技的发展,人们开始意识到这些宇宙规律可能对人工智能领域,尤其是量子强化学习架构的设计和优化有着深远的启示。量子强化学习是一种结合了量子计算和强化学习的新型机器学习方法。它利用量子计算机的优势,在训练和优化模
- C# 与 Python 代码互相调用的实践
一只小灿灿
netPythonc#python
一、引言在当今的软件开发领域,不同的编程语言都有其独特的优势和适用场景。C#是一种功能强大、面向对象的编程语言,主要应用于Windows平台开发、企业级应用开发以及游戏开发(借助Unity引擎等)等领域;而Python则以其简洁的语法、丰富的库以及在数据科学、机器学习、自动化脚本等众多方面的出色表现备受青睐。在实际的项目开发中,有时候我们希望能够结合这两种语言的优势,实现C#与Python代码的互
- 清华和哈工大把大模型量化做到了1比特,把世界顶尖多模态大模型开源大模型量化个人电脑运行!机器人领域首个开源视觉-语言操作大模型,激发开源VLMs更大潜能,视 Mamba速度提升2.8倍,内存能省87%
代码讲故事
机器人智慧之心Mamba机器人量化大模型开源视觉VLMs
清华和哈工大把大模型量化做到了1比特,把世界顶尖多模态大模型开源大模型量化个人电脑运行!机器人领域首个开源视觉-语言操作大模型,激发开源VLMs更大潜能,视Mamba速度提升2.8倍,内存能省87%。清华和哈工大把大模型量化做到了1比特。在追求更高效的机器学习模型部署时,模型量化技术应运而生,它通过降低权重矩阵的位宽来显著减少大型语言模型的存储和计算需求。我们一般的双精度浮点型double是64位
- 【机器学习】多模态AI——融合多种数据源的智能系统
2的n次方_
人工智能
随着人工智能的快速发展,单一模态(如文本、图像或语音)已经不能满足复杂任务的需求。多模态AI(MultimodalAI)通过结合多种数据源(如文本、图像、音频等)来提升模型的智能和表现,适用于多样化的应用场景,如自动驾驶、医疗诊断、跨语言翻译等。一、多模态AI简介多模态AI是一种将不同形式的数据(如文本、图像、音频等)融合在一起的技术,旨在让模型从多个维度感知和理解信息。这种融合使得AI系统能够从
- Python3.13来了!编程爱好者必看
Python之栈
人工智能python开发语言
Python3.13于近期发布,其中包含大量重要更新。Python作为机器学习、数据科学和人工智能领域使用最广泛的编程语言,一直在不断发展,以满足这些领域日益增长的需求。最新发布的Python3.13提供了多项具有影响力的改进,旨在提高性能和生产力,对于从事ML和AI项目的开发人员来说是一个重要的里程碑。Python在ML和AI领域的主导地位主要归功于它的简单性、广泛的库支持和庞大的社区。然而,随
- Transformer入门(1)transformer及其编码器-解码器
通信仿真实验室
GoogleBERT构建和训练NLP模型berttransformer人工智能NLP自然语言处理
文章目录1.Transformer简介2.Transformer的编码器-解码器架构3.transformer的编码器1.Transformer简介Transformer模型是一种用于自然语言处理的机器学习模型,它在2017年由Google的研究者提出,并在论文《AttentionisAllYouNeed》中详细描述。Transformer模型的核心创新在于其采用了自注意力(self-attent
- 【人工智能 | 大数据】基于人工智能的大数据分析方法
用心去追梦
人工智能大数据数据分析
基于人工智能(AI)的大数据分析方法是指利用机器学习、深度学习和其他AI技术来分析和处理大规模数据集。这些方法能够自动识别模式、提取有用信息,并做出预测或决策,从而帮助企业和组织更好地理解市场趋势、客户行为以及其他关键因素。以下是几种主要的基于AI的大数据分析方法:机器学习模型:通过训练算法让计算机从历史数据中学习并做出预测或分类。常见的机器学习技术包括监督学习(如回归分析、支持向量机)、非监督学
- 基于MATLAB机器学习、深度学习实践技术应用
梦想的初衷~
机器学习人工智能matlab机器学习深度学习
近年来,MATLAB在机器学习和深度学习领域的发展取得了显著成就。其强大的计算能力和灵活的编程环境使其成为科研人员和工程师的首选工具。在无人驾驶汽车、医学影像智能诊疗、ImageNet竞赛等热门领域,MATLAB提供了丰富的算法库和工具箱,极大地推动了人工智能技术的应用和创新。原文链接https://mp.weixin.qq.com/s?__biz=Mzg2NDYxNjMyNA==&mid=224
- 降维算法:主成分分析
一个人在码代码的章鱼
数学建模机器学习概率论
主成分分析一种常用的数据分析技术,主要用于数据降维,在众多领域如统计学、机器学习、信号处理等都有广泛应用。主成分分析是一种通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量(即主成分)的方法。这些主成分按照方差从大到小排列,方差越大,包含的原始数据信息越多。通常会选取前几个方差较大的主成分,以达到在尽量保留原始数据信息的前提下降低数据维度的目的。它通过将多个指标转换为少数几个主成分,
- Python从0到100(八十三):神经网络-使用残差网络RESNET识别手写数字
是Dream呀
python神经网络网络
前言:零基础学Python:Python从0到100最新最全教程。想做这件事情很久了,这次我更新了自己所写过的所有博客,汇集成了Python从0到100,共一百节课,帮助大家一个月时间里从零基础到学习Python基础语法、Python爬虫、Web开发、计算机视觉、机器学习、神经网络以及人工智能相关知识,成为学习学习和学业的先行者!欢迎大家订阅专栏:零基础学Python:Python从0到100最新
- 【人工智能】Python实战:构建高效的多任务学习模型
蒙娜丽宁
Python杂谈AI人工智能python学习
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界多任务学习(Multi-taskLearning,MTL)作为机器学习领域中的一种重要方法,通过在单一模型中同时学习多个相关任务,不仅能够提高模型的泛化能力,还能有效利用任务间的共享信息。本文深入探讨了多任务学习的基本概念、优势及其在实际应用中的重要性。
- 基于 Python 的机器学习模型部署到 Flask Web 应用:从训练到部署的完整指南
m0_74825223
python机器学习flask
目录引言技术栈步骤一:数据预处理步骤二:训练机器学习模型步骤三:创建FlaskWeb应用步骤四:测试Web应用步骤五:模型的保存与加载保存模型加载模型并在Flask中使用步骤六:Web应用的安全性考量示例:简单的输入验证示例:自定义错误处理示例:使用Flask-JWT-Extended进行认证结论参考资料引言在当今数据驱动的时代,机器学习模型已经广泛应用于各行各业,从金融、医疗到教育等领域。然而,
- 机器学习:scikit-learn 和 Jupyter Notebook(推荐初学者使用google colab)
wyc9999ww
机器学习scikit-learnjupyter人工智能python
对于初学者来说,scikit-learn是一个理想的机器学习入门工具。不仅提供了丰富的算法和功能,还通过一致的API设计,确保能够快速上手并进行各种机器学习任务。通过使用scikit-learn,可以专注于理解和实践机器学习的核心概念,而不必过多担心底层实现细节。所以scikit-learn能轻松实现从数据预处理到模型训练和评估的完整流程。此外在推荐一个适合初学者的深度学习平台工具googleco
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo