注意:saver()与restore()只是保存了session中的相关变量对应的值,并不涉及模型的结构。
Defined in tensorflow/python/training/saver.py.
See the guides: Exporting and Importing a MetaGraph > Exporting a Complete Model to MetaGraph, Exporting and Importing a MetaGraph, Variables > Saving and Restoring Variables
Saves and restores variables.
See Variables for an overview of variables, saving and restoring.
Saver的作用是将我们训练好的模型的参数保存下来,以便下一次继续用于训练或测试;Restore则是将训练好的参数提取出来。Saver类训练完后,是以checkpoints文件形式保存。提取的时候也是从checkpoints文件中恢复变量。Checkpoints文件是一个二进制文件,它把变量名映射到对应的tensor值 。
一般地,Saver会自动的管理Checkpoints文件。我们可以指定保存最近的N个Checkpoints文件,当然每一步都保存ckpt文件也是可以的,只是没必要,费存储空间。
saver()
可以选择global_step
参数来为ckpt文件名添加数字标记:saver.save(sess, 'my-model', global_step=0) ==> filename: 'my-model-0'
...
saver.save(sess, 'my-model', global_step=1000) ==> filename: 'my-model-1000'
max_to_keep
参数定义saver()
将自动保存的最近n个ckpt文件,默认n=5,即保存最近的5个检查点ckpt文件。若n=0或者None,则保存所有的ckpt文件。keep_checkpoint_every_n_hours
与max_to_keep
类似,定义每n小时保存一个ckpt文件。...
# Create a saver.
saver = tf.train.Saver(...variables...)
# Launch the graph and train, saving the model every 1,000 steps.
sess = tf.Session()
for step in xrange(1000000):
sess.run(..training_op..)
if step % 1000 == 0:
# Append the step number to the checkpoint name:
saver.save(sess, 'my-model', global_step=step)
一个简单的例子:
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
import tensorflow as tf
import time
time.clock()
x = tf.placeholder(tf.float32 ,[None, 784])
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x,W) + b)
# 为了计算交叉熵,我们需要添加一个新的占位符用于输入正确值。
y_ = tf.placeholder(tf.float32, [None,10])
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
# 在此,我们要求TF使用梯度下降算法,并以0.01的学习速率最小化交叉熵。
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
# 创建Saver节点,并设置自动保存最近n=1次模型
saver = tf.train.Saver(max_to_keep=1)
saver_max_acc = 0
for i in range(100):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_:batch_ys})
correct_prediction = tf.equal(tf.argmax(y,1), tf.arg_max(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))
if (i+1)%10 == 0:
print('{0:0>2d}:{1:.4f}'.format((i+1),accuracy.eval(session=sess, feed_dict={x: mnist.test.images, y_: mnist.test.labels})))
# 添加判断语句,选择保存精度最高的模型
if accuracy > saver_max_acc:
saver.save(sess,'ckpt/mnist.ckpt',global_step=i+1)
saver_max_acc = accuracy
sess.close()
print(time.clock())
restore(sess, save_path)
# sess: A Session to use to restore the parameters.
# save_path: Path where parameters were previously saved.
sess
: 保存参数的会话。save_path
: 保存参数的路径。tf.train.latest_checkpoint()
来自动获取最后一次保存的模型。如:model_file=tf.train.latest_checkpoint('ckpt/')
saver.restore(sess,model_file)
参考资料:
链接:https://www.jianshu.com/p/b0c789757df6