- 《神经网络与深度学习》(邱锡鹏) 内容概要【不含数学推导】
code_stream
#机器学习神经网络
第1章绪论基本概念:介绍了人工智能的发展历程及不同阶段的特点,如符号主义、连接主义、行为主义等。还阐述了深度学习在人工智能领域的重要地位和发展现状,以及其在图像、语音、自然语言处理等多个领域的成功应用。术语解释人工智能:旨在让机器模拟人类智能的技术和科学。深度学习:一种基于对数据进行表征学习的方法,通过构建具有很多层的神经网络模型,自动从大量数据中学习复杂的模式和特征。第2章机器学习概述基本概念:
- Python中的 redis keyspace 通知_python 操作redis psubscribe(‘__keyspace@0__ ‘)
2301_82243733
程序员python学习面试
最后Python崛起并且风靡,因为优点多、应用领域广、被大牛们认可。学习Python门槛很低,但它的晋级路线很多,通过它你能进入机器学习、数据挖掘、大数据,CS等更加高级的领域。Python可以做网络应用,可以做科学计算,数据分析,可以做网络爬虫,可以做机器学习、自然语言处理、可以写游戏、可以做桌面应用…Python可以做的很多,你需要学好基础,再选择明确的方向。这里给大家分享一份全套的Pytho
- 知识图谱的作用及其更新方式
甜瓜瓜哥
面试人工智能知识图谱人工智能
知识图谱的作用及其更新方式简介作用1.语义理解和推理2.信息检索3.推荐系统4.自然语言处理5.智能对话系统更新知识图谱的过程1.数据收集2.数据清洗和处理3.知识抽取4.知识融合5.验证和评估6.部署和应用总结简介知识图谱是一种以图形结构表示知识的方法,它包含了实体(如人物、地点、事物)以及它们之间的关系。知识图谱可以用于帮助计算机理解和处理自然语言,进行信息检索,进行推荐系统等多种应用。作用1
- 机器学习·文本数据读写处理
AAA顶置摸鱼
python深度学习机器学习人工智能数据处理
前言在自然语言处理的第一步,需要面对的是各种各样以不同形式表现的文本数据,比如,txt、Excel中的表格数据,还有无法直接打开的pkl文件等。针对这些不同类型的数据,可以基于Python中的基本功能函数或者调用某些库进行读写以及作一些基本的处理。一、文本数据读写方法1.读写TXT文件读取方法:read():读取整个文件,返回字符串。readline():逐行读取,返回字符串。readlines(
- AI编剧系统深度解析:从算法架构到影视工业化应用实战
Coderabo
DeepSeekR1模型企业级应用人工智能算法
媒体娱乐行业革命:AI编剧创意辅助系统架构解析与实战应用一、行业背景与技术架构在流媒体内容需求激增的当下,传统编剧模式面临产能瓶颈。AI编剧创意辅助系统通过自然语言处理(NLP)、生成对抗网络(GAN)和知识图谱技术,构建了包含剧本生成、情节优化、角色塑造等模块的智能创作平台。核心架构分为:知识图谱层:整合影视剧本数据库(IMSDb)、维基百科等结构化数据NLP处理层:基于Transformer的
- 基于Python的搜索引擎的设计与实现
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
搜索引擎,Python,爬虫,自然语言处理,信息检索,索引,算法,数据库1.背景介绍在信息爆炸的时代,海量数据无处不在,高效地获取所需信息变得至关重要。搜索引擎作为信息获取的桥梁,扮演着不可或缺的角色。传统的搜索引擎往往依赖于庞大的服务器集群和复杂的算法,对资源消耗较大,且难以满足个性化搜索需求。基于Python的搜索引擎设计,则凭借Python语言的易学易用、丰富的第三方库和强大的社区支持,为开
- 【拥抱AI】如何实现AI外呼通话,并与客户达成确认
奔跑草-
人工智能人工智能
实现AI外呼通话并与客户达成确认涉及多个技术组件和步骤。以下是一个基本的流程和技术方案,仅供参考。1.技术选型与准备主要技术组件语音识别(ASR):将客户的语音转换为文本。自然语言处理(NLP):理解和生成自然语言对话。语音合成(TTS):将文本转换为客户可以听到的语音。呼叫平台/API:用于发起和管理电话呼叫。数据库:存储客户信息、通话记录等数据。业务逻辑层:处理对话管理和决策逻辑。2.系统架构
- 探索Vearch:高效的深度学习向量相似度搜索系统
scaFHIO
深度学习人工智能python
Vearch是一个可扩展的分布式系统,用于高效搜索深度学习向量的相似度。在本文中,我们将介绍Vearch的技术背景及其核心原理,演示如何使用VearchPythonSDK进行安装和设置,并分析一些实际应用场景,最后提供一些实战建议。技术背景介绍随着深度学习技术的发展,向量相似度搜索在各类应用中变得越来越重要。从图像识别、推荐系统到自然语言处理,向量搜索可以极大地提升系统的性能。然而,随着数据量的增
- 华为的云端训练算力与迭代效率
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
华为云、云端训练、算力、迭代效率、人工智能、深度学习、模型训练、分布式训练、优化算法1.背景介绍人工智能(AI)技术近年来发展迅速,深度学习作为其核心驱动力,在图像识别、自然语言处理、语音识别等领域取得了突破性进展。然而,深度学习模型的训练需要海量数据和强大的计算资源,这成为AI技术发展面临的瓶颈之一。云计算作为一种新型的计算模式,为深度学习提供了强大的算力支持。华为云作为国内领先的云计算平台,在
- AI外呼机器人:营销新利器还是骚扰电话的升级版?
yoloGina
客户管理外呼系统电话外呼人工智能机器人
"您好,这里是XX房产,最近有购房需求吗?""您好,您最近有种牙需求吗?"相信很多人都接到过类似的营销电话,而电话那头,很可能已经不是真人,而是AI外呼机器人。近年来,AI外呼系统凭借其高效率、低成本的优势,迅速在电销行业普及,成为企业营销的"新宠"。据统计,2022年中国AI外呼市场规模已达50亿元,预计2025年将突破100亿元。AI外呼系统的核心技术是语音识别和自然语言处理。通过深度学习海量
- 使用Cohere进行文本生成: 从安装到实战
shuoac
python开发语言
Cohere是一家加拿大初创公司,提供自然语言处理模型,帮助企业提升人机交互体验。本文将详细介绍如何使用Cohere进行文本生成,包括环境配置、核心原理、代码演示和实际应用场景分析。1.技术背景介绍随着自然语言处理技术的快速发展,基于大模型的文本生成应用在各行各业中展现出了巨大的潜力。Cohere提供了高效、易用的API,使得开发者能够快速集成高质量的文本生成能力。本文将带你一步步实现这些功能。2
- 【深度学习pytorch-93】Transformer 相比 RNN 的优势
华东算法王
DL-pytorch深度学习pytorchtransformer
Transformer相比RNN的优势Transformer和RNN(循环神经网络)都是自然语言处理(NLP)领域的重要架构,但它们的工作原理和应用方式有很大不同。Transformer由于其独特的结构和机制,在多个方面优于RNN。以下是Transformer相比RNN的主要优势:1.并行计算能力RNN的局限性RNN是按顺序处理输入的,即每个时间步的输出都依赖于前一个时间步的输出。这意味着,在训练
- 深度学习模型中的知识蒸馏是如何工作的?
c++服务器开发
深度学习人工智能
深度学习模型在多个领域,特别是计算机视觉和自然语言处理中,已经取得了革命性的进展。然而,随着模型复杂性和资源需求的不断攀升,如何将这些庞大模型的知识浓缩为更紧凑、更高效的形式,成为了当前研究的热点。知识蒸馏,作为一种将知识从复杂模型转移到更简单模型的策略,已经成为实现这一目标的有效工具。在本文中,我们将深入探究深度学习模型中知识蒸馏的概念、原理及其在各领域的应用,以期为读者提供一个全面而严谨的视角
- 怎么使用DeepSeek?DeepSeek使用教程
轻创思维
网络
1.简介DeepSeek是一款基于人工智能技术的智能搜索引擎和信息检索工具。它能够通过自然语言处理技术理解用户的查询需求,并提供精准、全面的搜索结果。无论您是想查找信息、解答问题还是进行创意写作,DeepSeek都能为您提供高效的支持。2.主要功能智能搜索:支持自然语言输入,快速获取精准结果。多语言支持:支持中文、英文及其他多种语言的输入和输出。知识库覆盖:整合海量互联网信息,覆盖百科、新闻、学术
- 自然语言处理NLP 01语言转换&语言模型
伊一大数据&人工智能学习日志
自然语言处理自然语言处理人工智能语言模型nlp机器学习深度学习
目录语言转化方式1.数据预处理(DataPreprocessing)(1)文本清理(2)分词(3)语言特殊处理2.特征提取(FeatureExtraction)(1)词袋模型(BagofWords,BoW)(2)TF-IDF(3)词嵌入(WordEmbedding)3.模型输入(ModelInput)(1)序列编码(2)预训练模型输入4.模型推理(ModelInference)(1)使用传统模型(
- DeepSeek底层揭秘——多跳推理
9命怪猫
AI人工智能大模型深度学习ai神经网络
1.多跳推理(1)定义多跳推理(Multi-hopReasoning)是一种复杂的推理技术,指模型在回答问题或解决任务时,需要跨越多个信息片段或知识点,逐步推导出最终答案,而不是直接从单一信息源中获取结果。每一次跨越称为一个“跳跃”(hop),多跳推理通常需要模型具备逻辑推理能力、上下文理解能力以及信息整合能力。例如,在自然语言处理(NLP)中,多跳推理任务可能需要模型从多个段落中提取相关信息,并
- 基于 HanLP 的句子结构分析与关系抽取
梦落青云
知识图谱javaHanLP
一、引言自然语言处理(NLP)是人工智能领域的重要分支,旨在让计算机理解和处理人类语言。句子结构分析和关系抽取是NLP中的关键任务,它们可以帮助我们理解句子的语法结构和语义关系。HanLP是一款功能强大的中文自然语言处理工具包,提供了丰富的功能,包括分词、词性标注、依存句法分析等。本文将介绍如何使用HanLP进行句子结构分析与关系抽取。二、HanLP简介HanLP是由汉语言技术实验室开发的开源中文
- 本地部署Deepseek:从零开始,打造你的私人AI助手!
软件求生
#工作建议架构微服务云原生java开发语言
大家好,我是小米,一个31岁、热爱技术的“技术宅”。今天我要和大家分享一个超级酷炫的技术——本地部署Deepseek!如果你对AI感兴趣,或者想拥有一个属于自己的私人AI助手,那这篇文章绝对不容错过!Deepseek是什么?在开始之前,我们先来聊聊Deepseek到底是什么。简单来说,Deepseek是一个基于深度学习的AI模型,它可以帮助你完成各种任务,比如自然语言处理、图像识别、数据分析等等。
- AI人工智能代理工作流AI Agent WorkFlow:自然语言处理在工作流中的应用
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI人工智能代理工作流AIAgentWorkFlow:自然语言处理在工作流中的应用关键词:AI代理工作流管理自然语言处理业务流程自动化交互式AI助手1.背景介绍1.1问题的由来随着数字化转型的深入,企业对提高运营效率的需求日益迫切。传统的业务流程处理方式,如手工操作、邮件交流等,既耗费时间又容易出错。为了解决这些问题,企业开始探索利用自动化技术来提高业务流程的效率和准确性。自然语言处理(NLP)技
- 《大模型应用开发极简入门》随记
hoypte
人工智能
术语:自然语言处理(NLP)人工智能(AI)大预言模型(LLM)机器学习(ML)深度学习(DL)内容LLM概述ML算法被称为人工神经网络DL是ML的一个分支最先开始简单语言模型吗,例如:n-gram模型(通过词频来根据前面的词预测句子里下一个词---可能生成不连贯的词),为了提升性能引入循环神经网络(RNN)和长短期记忆(LSTM)网络---处理大量数据效率还是不行。Transformer架构架构
- Python库 - transformers
司南锤
PYTHON库python机器学习python开发语言
transformers库是由HuggingFace开发的一个非常流行的Python库,用于自然语言处理(NLP)任务。它提供了大量的预训练模型,这些模型可以用于各种NLP任务,如文本分类、问答、翻译、摘要生成等。以下是关于transformers库的详细介绍:1.主要特点预训练模型:transformers库包含了多种预训练的语言模型,如BERT、GPT、T5、XLNet等。这些模型在大规模文本
- 使用PGVecto.rs在Postgres中进行向量数据库操作
dgay_hua
数据库python
使用PGVecto.rs在Postgres中进行向量数据库操作技术背景介绍向量数据库是一种用于存储和检索高维向量数据的数据库,非常适合应用于自然语言处理、推荐系统等领域。在这篇文章中,我们将介绍如何使用PGVecto.rs在Postgres中进行向量数据库操作。核心原理解析PGVecto.rs是基于Postgres的向量数据库实现,可以轻松地实现向量的存储和高效检索。它通过Postgres的扩展实
- 【Python】成功解决NameError: name ‘XXX’ is not defined
云天徽上
python运行报错解决记录python开发语言pandas机器学习numpy
【Python】成功解决NameError:name‘XXX’isnotdefined欢迎莅临我的个人主页这里是我深耕Python编程、机器学习和自然语言处理(NLP)领域,并乐于分享知识与经验的小天地!博主简介:我是云天徽上,一名对技术充满热情的探索者。多年的Python编程和机器学习实践,使我深入理解了这些技术的核心原理,并能够在实际项目中灵活应用。尤其是在NLP领域,我积累了丰富的经验,能够
- LangChain大模型应用开发:工作流编排
梦丶晓羽
langchainpython自然语言处理人工智能
介绍大家好,博主又来给大家分享知识了,那么今天又给大家分享什么内容呢?今天我要给大家分享的内容是LangChain工作流编排。那么什么是LangChain工作流编排呢?简单来说,LangChain工作流编排就是将多个与自然语言处理相关的组件,像提示模板、大语言模型、各种实用工具等巧妙地组合在一起,形成一个有条理、可执行的流程。LangChain提供了多种方式来实现这种编排,其中很有特色的就是链式调
- DeepSeek模型实战:从理论到应用的深度探索
CodeJourney.
人工智能算法数据库
一、引言在人工智能快速发展的当下,大型语言模型已成为自然语言处理领域的核心力量。DeepSeek模型作为其中的佼佼者,凭借其先进的架构和强大的性能,吸引了众多开发者和研究人员的关注。本文将深入探讨DeepSeek模型的技术原理,并通过实际案例展示其在不同场景下的应用,为读者提供从理论到实践的全面指导。二、DeepSeek模型技术剖析(一)架构基础DeepSeek模型基于Transformer架构构
- DeepSeek 的创新融合:多行业应用实践探索
♡喜欢做梦
人工智能deepseek
引言在数字化转型的浪潮中,技术的融合与创新成为推动各行业发展的关键力量。蓝耘平台作为行业内备受瞩目的创新平台,以其强大的资源整合能力和灵活的架构,为企业提供了高效的服务支持。而DeepSeek凭借先进的人工智能技术,在自然语言处理、数据分析等领域展现出卓越的性能。当蓝耘平台与DeepSeek携手,二者的优势互补为多行业解决方案带来了全新的应用实践方向,为企业解决复杂业务问题、提升运营效率提供了强大
- 【DeepSeek】DeepSeek 如何应用于政务系统?
深度求索者
政务
DeepSeek作为一款高性能、低成本的AI大模型,近期在政务系统中得到了广泛应用,其技术能力和场景适配性正在推动数字政府的智能化转型。以下从应用场景、技术支撑、实际成效及未来方向等方面进行深度解析:一、核心应用场景智能公文处理政策解读与文件起草:DeepSeek基于自然语言处理(NLP)技术,可自动生成公文初稿,结合政务语境提取关键信息,生成拟办意见。例如,深圳市龙岗区的公文校对时间从人工5分钟
- Decoder-Only、Encoder-Only、Encoder-Decoder 区别
会喘气的粽子丶
nlp人工智能
Decoder-Only、Encoder-Only和Encoder-Decoder是三种常见的神经网络架构,主要用于自然语言处理(NLP)任务。它们在结构和应用上有显著的区别。1.Decoder-Only架构描述:仅包含解码器部分,没有编码器。应用:通常用于生成任务,如语言模型和对话系统。代表模型:GPT(GenerativePre-trainedTransformer)特点:自回归生成:模型通过
- 【AI引领潮流|未来智慧生活】国内机器聊天软件推荐(超全!)and人工智能&智能学习
熔光
人工智能AI软件智能学习生活
1.AI聊天软件概述1.1AI聊天软件的关键技术1.2AI聊天软件的应用1.3AI聊天软件的挑战1.4总结2.智普清言3.文心一言4.讯飞星火5.知元AI6.白马AI7.ChatGPT8.一览AI应用链接9.人工智能10.机器学习↓个人主页:C_GUIQU↑1.AI聊天软件概述AI聊天软件是一种利用自然语言处理(NLP)、自然语言理解(NLU)和机器学习(ML)技术构建的软件,它能够理解用户的自然
- 使用OpenAI LLM与Neo4j数据库进行自然语言交互
bBADAS
neo4j数据库交互python
技术背景介绍在现代数据分析和应用开发中,图数据库以其独特的强大功能越来越受到重视。其中,Neo4j是最受欢迎的图数据库之一。结合自然语言处理(NLP),可以使数据查询变得更加直观和便捷。本篇文章将介绍如何使用OpenAI的语言模型将自然语言问题转换成Cypher查询,并通过Neo4j数据库执行该查询,并给出自然语言的响应。核心原理解析我们的目标是实现一个系统,该系统能够接受自然语言输入,将其转换为
- Nginx负载均衡
510888780
nginx应用服务器
Nginx负载均衡一些基础知识:
nginx 的 upstream目前支持 4 种方式的分配
1)、轮询(默认)
每个请求按时间顺序逐一分配到不同的后端服务器,如果后端服务器down掉,能自动剔除。
2)、weight
指定轮询几率,weight和访问比率成正比
- RedHat 6.4 安装 rabbitmq
bylijinnan
erlangrabbitmqredhat
在 linux 下安装软件就是折腾,首先是测试机不能上外网要找运维开通,开通后发现测试机的 yum 不能使用于是又要配置 yum 源,最后安装 rabbitmq 时也尝试了两种方法最后才安装成功
机器版本:
[root@redhat1 rabbitmq]# lsb_release
LSB Version: :base-4.0-amd64:base-4.0-noarch:core
- FilenameUtils工具类
eksliang
FilenameUtilscommon-io
转载请出自出处:http://eksliang.iteye.com/blog/2217081 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- xml文件解析SAX
不懂事的小屁孩
xml
xml文件解析:xml文件解析有四种方式,
1.DOM生成和解析XML文档(SAX是基于事件流的解析)
2.SAX生成和解析XML文档(基于XML文档树结构的解析)
3.DOM4J生成和解析XML文档
4.JDOM生成和解析XML
本文章用第一种方法进行解析,使用android常用的DefaultHandler
import org.xml.sax.Attributes;
- 通过定时任务执行mysql的定期删除和新建分区,此处是按日分区
酷的飞上天空
mysql
使用python脚本作为命令脚本,linux的定时任务来每天定时执行
#!/usr/bin/python
# -*- coding: utf8 -*-
import pymysql
import datetime
import calendar
#要分区的表
table_name = 'my_table'
#连接数据库的信息
host,user,passwd,db =
- 如何搭建数据湖架构?听听专家的意见
蓝儿唯美
架构
Edo Interactive在几年前遇到一个大问题:公司使用交易数据来帮助零售商和餐馆进行个性化促销,但其数据仓库没有足够时间去处理所有的信用卡和借记卡交易数据
“我们要花费27小时来处理每日的数据量,”Edo主管基础设施和信息系统的高级副总裁Tim Garnto说道:“所以在2013年,我们放弃了现有的基于PostgreSQL的关系型数据库系统,使用了Hadoop集群作为公司的数
- spring学习——控制反转与依赖注入
a-john
spring
控制反转(Inversion of Control,英文缩写为IoC)是一个重要的面向对象编程的法则来削减计算机程序的耦合问题,也是轻量级的Spring框架的核心。 控制反转一般分为两种类型,依赖注入(Dependency Injection,简称DI)和依赖查找(Dependency Lookup)。依赖注入应用比较广泛。
- 用spool+unixshell生成文本文件的方法
aijuans
xshell
例如我们把scott.dept表生成文本文件的语句写成dept.sql,内容如下:
set pages 50000;
set lines 200;
set trims on;
set heading off;
spool /oracle_backup/log/test/dept.lst;
select deptno||','||dname||','||loc
- 1、基础--名词解析(OOA/OOD/OOP)
asia007
学习基础知识
OOA:Object-Oriented Analysis(面向对象分析方法)
是在一个系统的开发过程中进行了系统业务调查以后,按照面向对象的思想来分析问题。OOA与结构化分析有较大的区别。OOA所强调的是在系统调查资料的基础上,针对OO方法所需要的素材进行的归类分析和整理,而不是对管理业务现状和方法的分析。
OOA(面向对象的分析)模型由5个层次(主题层、对象类层、结构层、属性层和服务层)
- 浅谈java转成json编码格式技术
百合不是茶
json编码java转成json编码
json编码;是一个轻量级的数据存储和传输的语言
在java中需要引入json相关的包,引包方式在工程的lib下就可以了
JSON与JAVA数据的转换(JSON 即 JavaScript Object Natation,它是一种轻量级的数据交换格式,非
常适合于服务器与 JavaScript 之间的数据的交
- web.xml之Spring配置(基于Spring+Struts+Ibatis)
bijian1013
javaweb.xmlSSIspring配置
指定Spring配置文件位置
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>
/WEB-INF/spring-dao-bean.xml,/WEB-INF/spring-resources.xml,
/WEB-INF/
- Installing SonarQube(Fail to download libraries from server)
sunjing
InstallSonar
1. Download and unzip the SonarQube distribution
2. Starting the Web Server
The default port is "9000" and the context path is "/". These values can be changed in &l
- 【MongoDB学习笔记十一】Mongo副本集基本的增删查
bit1129
mongodb
一、创建复本集
假设mongod,mongo已经配置在系统路径变量上,启动三个命令行窗口,分别执行如下命令:
mongod --port 27017 --dbpath data1 --replSet rs0
mongod --port 27018 --dbpath data2 --replSet rs0
mongod --port 27019 -
- Anychart图表系列二之执行Flash和HTML5渲染
白糖_
Flash
今天介绍Anychart的Flash和HTML5渲染功能
HTML5
Anychart从6.0第一个版本起,已经逐渐开始支持各种图的HTML5渲染效果了,也就是说即使你没有安装Flash插件,只要浏览器支持HTML5,也能看到Anychart的图形(不过这些是需要做一些配置的)。
这里要提醒下大家,Anychart6.0版本对HTML5的支持还不算很成熟,目前还处于
- Laravel版本更新异常4.2.8-> 4.2.9 Declaration of ... CompilerEngine ... should be compa
bozch
laravel
昨天在为了把laravel升级到最新的版本,突然之间就出现了如下错误:
ErrorException thrown with message "Declaration of Illuminate\View\Engines\CompilerEngine::handleViewException() should be compatible with Illuminate\View\Eng
- 编程之美-NIM游戏分析-石头总数为奇数时如何保证先动手者必胜
bylijinnan
编程之美
import java.util.Arrays;
import java.util.Random;
public class Nim {
/**编程之美 NIM游戏分析
问题:
有N块石头和两个玩家A和B,玩家A先将石头随机分成若干堆,然后按照BABA...的顺序不断轮流取石头,
能将剩下的石头一次取光的玩家获胜,每次取石头时,每个玩家只能从若干堆石头中任选一堆,
- lunce创建索引及简单查询
chengxuyuancsdn
查询创建索引lunce
import java.io.File;
import java.io.IOException;
import org.apache.lucene.analysis.Analyzer;
import org.apache.lucene.analysis.standard.StandardAnalyzer;
import org.apache.lucene.document.Docume
- [IT与投资]坚持独立自主的研究核心技术
comsci
it
和别人合作开发某项产品....如果互相之间的技术水平不同,那么这种合作很难进行,一般都会成为强者控制弱者的方法和手段.....
所以弱者,在遇到技术难题的时候,最好不要一开始就去寻求强者的帮助,因为在我们这颗星球上,生物都有一种控制其
- flashback transaction闪回事务查询
daizj
oraclesql闪回事务
闪回事务查询有别于闪回查询的特点有以下3个:
(1)其正常工作不但需要利用撤销数据,还需要事先启用最小补充日志。
(2)返回的结果不是以前的“旧”数据,而是能够将当前数据修改为以前的样子的撤销SQL(Undo SQL)语句。
(3)集中地在名为flashback_transaction_query表上查询,而不是在各个表上通过“as of”或“vers
- Java I/O之FilenameFilter类列举出指定路径下某个扩展名的文件
游其是你
FilenameFilter
这是一个FilenameFilter类用法的例子,实现的列举出“c:\\folder“路径下所有以“.jpg”扩展名的文件。 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
- C语言学习五函数,函数的前置声明以及如何在软件开发中合理的设计函数来解决实际问题
dcj3sjt126com
c
# include <stdio.h>
int f(void) //括号中的void表示该函数不能接受数据,int表示返回的类型为int类型
{
return 10; //向主调函数返回10
}
void g(void) //函数名前面的void表示该函数没有返回值
{
//return 10; //error 与第8行行首的void相矛盾
}
in
- 今天在测试环境使用yum安装,遇到一个问题: Error: Cannot retrieve metalink for repository: epel. Pl
dcj3sjt126com
centos
今天在测试环境使用yum安装,遇到一个问题:
Error: Cannot retrieve metalink for repository: epel. Please verify its path and try again
处理很简单,修改文件“/etc/yum.repos.d/epel.repo”, 将baseurl的注释取消, mirrorlist注释掉。即可。
&n
- 单例模式
shuizhaosi888
单例模式
单例模式 懒汉式
public class RunMain {
/**
* 私有构造
*/
private RunMain() {
}
/**
* 内部类,用于占位,只有
*/
private static class SingletonRunMain {
priv
- Spring Security(09)——Filter
234390216
Spring Security
Filter
目录
1.1 Filter顺序
1.2 添加Filter到FilterChain
1.3 DelegatingFilterProxy
1.4 FilterChainProxy
1.5
- 公司项目NODEJS实践0.1
逐行分析JS源代码
mongodbnginxubuntunodejs
一、前言
前端如何独立用nodeJs实现一个简单的注册、登录功能,是不是只用nodejs+sql就可以了?其实是可以实现,但离实际应用还有距离,那要怎么做才是实际可用的。
网上有很多nod
- java.lang.Math
liuhaibo_ljf
javaMathlang
System.out.println(Math.PI);
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1.2));
System.out.println(Math.abs(1));
System.out.println(Math.abs(111111111));
System.out.println(Mat
- linux下时间同步
nonobaba
ntp
今天在linux下做hbase集群的时候,发现hmaster启动成功了,但是用hbase命令进入shell的时候报了一个错误 PleaseHoldException: Master is initializing,查看了日志,大致意思是说master和slave时间不同步,没办法,只好找一种手动同步一下,后来发现一共部署了10来台机器,手动同步偏差又比较大,所以还是从网上找现成的解决方
- ZooKeeper3.4.6的集群部署
roadrunners
zookeeper集群部署
ZooKeeper是Apache的一个开源项目,在分布式服务中应用比较广泛。它主要用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务、状态同步、集群管理、配置文件管理、同步锁、队列等。这里主要讲集群中ZooKeeper的部署。
1、准备工作
我们准备3台机器做ZooKeeper集群,分别在3台机器上创建ZooKeeper需要的目录。
数据存储目录
- Java高效读取大文件
tomcat_oracle
java
读取文件行的标准方式是在内存中读取,Guava 和Apache Commons IO都提供了如下所示快速读取文件行的方法: Files.readLines(new File(path), Charsets.UTF_8); FileUtils.readLines(new File(path)); 这种方法带来的问题是文件的所有行都被存放在内存中,当文件足够大时很快就会导致
- 微信支付api返回的xml转换为Map的方法
xu3508620
xmlmap微信api
举例如下:
<xml>
<return_code><![CDATA[SUCCESS]]></return_code>
<return_msg><![CDATA[OK]]></return_msg>
<appid><