CIFAR-10模型训练python版cifar10数据集

在之前的博客中已经对CIFAR-10做了整体的解析,但是目前从tensorflow/models/tree/master/tutorials/image/cifar10中下载下来,运行cifar10_train.py后训练的是binary(适用于C语言)版的数据集。

那么想训练CIFAR-10 python version数据集该怎么修改代码呢?

其实主要需要修改的部分是cifar10_input.py文件。因为python版本的数据集形式不相同,具体格式请上Alex官网的The CIFAR-10 dataset去了解。因为格式不同,导入数据集的代码部分对于数据集的解析也就不相同。python版如下:

def unpickle(file):
    import pickle
    with open(file, 'rb') as fo:
        dict = pickle.load(fo, encoding='bytes')
    return dict

这里就不罗嗦啦,直接向大家奉上整个代码:

from __future__ import print_function
import os
import tensorflow as tf
import pickle as pickle
import numpy as np


from PIL import Image

#encoding:utf-8
from scipy import ndimage

# Global constants describing the CIFAR-10 data set
# CIFAR10 image size of 32x32. will distort to 24x24
IMAGE_SIZE = 24

NUM_CLASSES = 10
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 50000
NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = 10000

# train_data_queue = None
# train_labels_queue = None
# train_f_names_queue = None

#读取数据集中的各个文件,按照类型生成相应格式,或列表 或矩阵
def read_cifar10_python_pickles(filenames):
    data = None
    labels = None
    f_names = None
    # Dict Keys from pickle files
    # ['data', 'labels', 'batch_label', 'filenames']
    """
    filenames = [os.path.join(data_dir, 'data_batch_%d' % i)
                 for i in xrange(1, 6)]"""
    for pickle_file in filenames:
        if not tf.gfile.Exists(pickle_file):
            raise ValueError('Failed to find file: ' + pickle_file)
        with open(pickle_file, 'rb') as p:
            # pickle.load(file,*,fix_imports=True, encoding="ASCII", errors="strict")
            #必填参数file必须以二进制可读模式打开,即“rb”,其他都为可选参数
            save = pickle.load(p,encoding='iso-8859-1')
            s_data = save['data']
            s_labels = np.array(save['labels'])
            s_f_names = np.array(save['filenames'])
            # 删除列表
            del save
            print('data set', s_data.shape, s_labels.shape)

            #numpy提供了numpy.append(arr, values, axis=None)函数。对于参数规定,
            # 要么一个数组和一个数值;要么两个数组,不能三个及以上数组直接append拼接。append函数返回的始终是一个一维数组。
            data = np.append(data, s_data, axis=0) if data is not None else s_data
            labels = np.append(labels, s_labels, axis=0) if labels is not None else s_labels
            f_names = np.append(f_names, s_f_names, axis=0) if f_names is not None else s_f_names
    print('Data set: ', data.shape, len(labels))
    return data, labels, f_names


def read_cifar10_python_pickle(filename):
    if not tf.gfile.Exists(filename):
        raise ValueError('Failed to find file: ' + filename)
    with open(filename, 'rb') as p:
        save = pickle.load(p,encoding='iso-8859-1')
        data = save['data']
        labels = np.array(save['labels'])
        f_names = np.array(save['filenames'])
        del save
        print('data set', data.shape, labels.shape)

    return data, labels, f_names


def read_cifar10_to_queue(filenames):

    data, labels, f_names = read_cifar10_python_pickles(filenames)

    # def input_producer(input_tensor,
    #                    element_shape=None,
    #                    num_epochs=None,
    #                    shuffle=True,
    #                    seed=None,
    #                    capacity=32,
    #                    shared_name=None,
    #                    summary_name=None,
    #                    name=None,
    #                    cancel_op=None):
    #这个地方是将数据按照类型作用进行生成队列
    data_queue = tf.train.input_producer(data, shuffle=False)
    labels_queue = tf.train.input_producer(labels, shuffle=False)
    f_names_queue = tf.train.input_producer(f_names, shuffle=False)

    return data_queue, labels_queue, f_names_queue


def read_cifar10_reader(data_q, labels_q):
    #dequeue,函数名,用于移除每个匹配元素的指定队列中的第一个函数,并执行被移除的函数。
    #将元素从队列中移出。如果在执行该操作时队列已空,
    #那么将会阻塞直到元素出列,返回出列的tensors的tuple
    return data_q.dequeue(), labels_q.dequeue()


def read_cifar10(filenames):
    class CIFAR10Record(object):
        pass
    result = CIFAR10Record()
    label_bytes = 1  # 2 for CIFAR-100
    result.height = 32
    result.width = 32
    result.depth = 3

    data_q, label_q, _ = read_cifar10_to_queue(filenames)
    data, label = read_cifar10_reader(data_q, label_q)
    print(data.get_shape(), data.dtype)
    print(label.get_shape(), label.dtype)
    result.label = tf.cast(label, tf.int32)#uint8转变成int32数据类型
    depth_major = tf.reshape(data, [result.depth, result.height, result.width])
    # Convert from [depth, height, width] to [height, width, depth].
    result.uint8image = tf.transpose(depth_major, [1, 2, 0])
    print(depth_major.get_shape(), depth_major.dtype)
    print(result.label.get_shape(), result.label.dtype)
    return result

# 构建一个排列后的一组图片和分类
def _generate_image_and_label_batch(image, label, min_queue_examples,
                                    batch_size, shuffle):
    """Construct a queued batch of images and labels.
  Args:
    image: 3-D Tensor of [height, width, 3] of type.float32.
    label: 1-D Tensor of type.int32
    min_queue_examples: int32, minimum number of samples to retain
      in the queue that provides of batches of examples.
    batch_size: Number of images per batch.
    shuffle: boolean indicating whether to use a shuffling queue.
  Returns:
    images: Images. 4D tensor of [batch_size, height, width, 3] size.
    labels: Labels. 1D tensor of [batch_size] size.
  """
    # Create a queue that shuffles the examples, and then
    # read 'batch_size' images + labels from the example queue.
    num_preprocess_threads = 16
    if shuffle:
        images, label_batch = tf.train.shuffle_batch(
            [image, label],
            batch_size=batch_size,
            num_threads=num_preprocess_threads,
            capacity=min_queue_examples + 3 * batch_size,
            min_after_dequeue=min_queue_examples)
    else:
        # tf.train.batch(tensors, batch_size, num_threads=1, capacity=32,
        # enqueue_many=False, shapes=None, dynamic_pad=False,
        # allow_smaller_final_batch=False, shared_name=None, name=None)
        # 这里是用队列实现,已经默认使用enqueue_runner将enqueue_runner加入到Graph'senqueue_runner集合中
        # 其默认enqueue_many=False时,输入的tensor为一个样本【x,y,z】,输出为Tensor的一批样本
        # capacity:队列中允许最大元素个数
        images, label_batch = tf.train.batch(
            [image, label],
            batch_size=batch_size,
            num_threads=num_preprocess_threads,
            capacity=min_queue_examples + 3 * batch_size)

    # Display the training images in the visualizer.
    #tf.image_summary('images', images)

    return images, tf.reshape(label_batch, [batch_size])


def distorted_inputs(data_dir, batch_size):
    """Construct distorted input for CIFAR training using the Reader ops.
        Args:
            data_dir: Path to the CIFAR-10 data directory.
            batch_size: Number of images per batch.
        Returns:
            images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
            labels: Labels. 1D tensor of [batch_size] size.

    """

    filenames = [os.path.join(data_dir, 'data_batch_%d' % i) for i in range(1,6)]
    for f in filenames:
        if not tf.gfile.Exists(f):
            raise ValueError('Failed to find file: ' + f)

    read_input = read_cifar10(filenames)
    reshaped_image = tf.cast(read_input.uint8image, tf.float32)

    height = IMAGE_SIZE
    width = IMAGE_SIZE

    # Image processing for training the network. Note the many random
    # distortions applied to the image.

    # Randomly crop a [height, width] section of the image.
    distorted_image = tf.random_crop(reshaped_image, [height, width, 3])

    # Randomly flip the image horizontally.
    distorted_image = tf.image.random_flip_left_right(distorted_image)

    # Because these operations are not commutative, consider randomizing
    # the order their operation.
    distorted_image = tf.image.random_brightness(distorted_image,
                                                 max_delta=63)
    distorted_image = tf.image.random_contrast(distorted_image,
                                               lower=0.2, upper=1.8)

    # Subtract off the mean and divide by the variance of the pixels.
    float_image = tf.image.per_image_standardization(distorted_image)

    # Ensure that the random shuffling has good mixing properties.
    # min_queue_examples: train(50000*0.4=20000) eval(10000*0.4=4000)
    min_fraction_of_examples_in_queue = 0.4
    min_queue_examples = int(NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN *
                             min_fraction_of_examples_in_queue)
    print('Filling queue with %d CIFAR images before starting to train. '
          'This will take a few minutes.' % min_queue_examples)

    # Generate a batch of images and labels by building up a queue of examples.
    return _generate_image_and_label_batch(float_image, read_input.label,
                                           min_queue_examples, batch_size,
                                           shuffle=True)


def inputs(eval_data, data_dir, batch_size):
    """Construct input for CIFAR evaluation using the Reader ops.
  Args:
    eval_data: bool, indicating if one should use the train or eval data set.
    data_dir: Path to the CIFAR-10 data directory.
    batch_size: Number of images per batch.
  Returns:
    images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
    labels: Labels. 1D tensor of [batch_size] size.
  """
    if not eval_data:
        filenames = [os.path.join(data_dir, 'data_batch_%d' % i) for i in range(1, 6)]
        num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
    else:
        filenames = [os.path.join(data_dir, 'test_batch')]
        num_examples_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_EVAL

    for f in filenames:
        if not tf.gfile.Exists(f):
            raise ValueError('Failed to find file: ' + f)

    read_input = read_cifar10(filenames)
    reshaped_image = tf.cast(read_input.uint8image, tf.float32)

    height = IMAGE_SIZE
    width = IMAGE_SIZE

    resized_image = tf.image.resize_image_with_crop_or_pad(reshaped_image,
                                                           width, height)
    float_image = tf.image.per_image_whitening(resized_image)

    min_fraction_of_examples_in_queue = 0.4
    min_queue_examples = int(num_examples_per_epoch * min_fraction_of_examples_in_queue)

    return _generate_image_and_label_batch(float_image, read_input.label,
                                           min_queue_examples, batch_size,
                                           shuffle=False)


def test_inputs(data_dir):
    filenames = [os.path.join(data_dir, 'test_batch')]

    for f in filenames:
        if not tf.gfile.Exists(f):
            raise ValueError('Failed to find file: ' + f)

    read_input = read_cifar10(filenames)
    reshaped_image = tf.cast(read_input.uint8image, tf.float32)

    height = IMAGE_SIZE
    width = IMAGE_SIZE

    resized_image = tf.image.resize_image_with_crop_or_pad(reshaped_image,
                                                           width, height)
    float_image = tf.image.per_image_whitening(resized_image)

    return_image = tf.reshape(float_image, [-1, height, width, 3])
    return return_image, read_input.label


def test_input_process(image, label=None):
    reshaped_image = tf.cast(image, tf.float32)
    if label is not None:
        label = tf.cast(label, tf.int32)

    height = IMAGE_SIZE
    width = IMAGE_SIZE

    resized_image = tf.image.resize_image_with_crop_or_pad(reshaped_image,
                                                           width, height)
    float_image = tf.image.per_image_whitening(resized_image)

    return_image = tf.reshape(float_image, [-1, height, width, 3])
    return return_image, label


def read_n_preprocess_external_input(image_file):
    temp_image = Image.open(image_file)
    height = temp_image.size[1]
    width = temp_image.size[0]
    if height > width:
        temp_image = temp_image.crop((0, (height - width)/2, width, (height + width)/2))
    elif height < width:
        temp_image = temp_image.crop(((width - height)/2, 0, (height + width)/2, height))
    temp_image.thumbnail((32, 32), Image.ANTIALIAS)
    temp_image_arr = np.array(temp_image)
    return temp_image_arr

cifar10.py修改后:

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""Builds the CIFAR-10 network.

Summary of available functions:

 # Compute input images and labels for training. If you would like to run
 # evaluations, use inputs() instead.
 inputs, labels = distorted_inputs()

 # Compute inference on the model inputs to make a prediction.
 predictions = inference(inputs)

 # Compute the total loss of the prediction with respect to the labels.
 loss = loss(predictions, labels)

 # Create a graph to run one step of training with respect to the loss.
 train_op = train(loss, global_step)
"""
# pylint: disable=missing-docstring
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import os
import re
import sys
import tarfile

from six.moves import urllib
import tensorflow as tf


import cifar10_input

parser = argparse.ArgumentParser()

# Basic model parameters.
parser.add_argument('--batch_size', type=int, default=128,
                    help='Number of images to process in a batch.')

parser.add_argument('--data_dir', type=str, default='/tmp/cifar10_data_py',
                    help='Path to the CIFAR-10 data directory.')

parser.add_argument('--use_fp16', type=bool, default=False,
                    help='Train the model using fp16.')

FLAGS = parser.parse_args()

# Global constants describing the CIFAR-10 data set.
IMAGE_SIZE = cifar10_input.IMAGE_SIZE
NUM_CLASSES = cifar10_input.NUM_CLASSES
NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN
NUM_EXAMPLES_PER_EPOCH_FOR_EVAL = cifar10_input.NUM_EXAMPLES_PER_EPOCH_FOR_EVAL


# Constants describing the training process.
MOVING_AVERAGE_DECAY = 0.9999     # The decay to use for the moving average.
NUM_EPOCHS_PER_DECAY = 350.0      # Epochs after which learning rate decays.# 衰减呈阶梯函数,控制衰减周期(阶梯宽度)
LEARNING_RATE_DECAY_FACTOR = 0.1  # Learning rate decay factor.# 学习率衰减因子
INITIAL_LEARNING_RATE = 0.1       # Initial learning rate.# 初始学习率

# If a model is trained with multiple GPUs, prefix all Op names with tower_name
# to differentiate the operations. Note that this prefix is removed from the
# names of the summaries when visualizing a model.
TOWER_NAME = 'tower'

DATA_URL = 'http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'


def _activation_summary(x):
  """Helper to create summaries for activations.

  Creates a summary that provides a histogram of activations.
  Creates a summary that measures the sparsity of activations.

  Args:
    x: Tensor
  Returns:
    nothing
  """
  # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
  # session. This helps the clarity of presentation on tensorboard.
  tensor_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', x.op.name)
  tf.summary.histogram(tensor_name + '/activations', x)
  tf.summary.scalar(tensor_name + '/sparsity',
                                       tf.nn.zero_fraction(x))


def _variable_on_cpu(name, shape, initializer):
  """Helper to create a Variable stored on CPU memory.

  Args:
    name: name of the variable
    shape: list of ints
    initializer: initializer for Variable

  Returns:
    Variable Tensor
  """
  with tf.device('/cpu:0'):#一个 context manager,用于为新的op指定要使用的硬件
    dtype = tf.float16 if FLAGS.use_fp16 else tf.float32
    var = tf.get_variable(name, shape, initializer=initializer, dtype=dtype)
  return var


def _variable_with_weight_decay(name, shape, stddev, wd):
  """Helper to create an initialized Variable with weight decay.

  Note that the Variable is initialized with a truncated normal distribution.
  A weight decay is added only if one is specified.

  Args:
    name: name of the variable
    shape: list of ints
    stddev: standard deviation of a truncated Gaussian
    wd: add L2Loss weight decay multiplied by this float. If None, weight
        decay is not added for this Variable.

  Returns:
    Variable Tensor
  """
  dtype = tf.float16 if FLAGS.use_fp16 else tf.float32
  var = _variable_on_cpu(
      name,
      shape,
      tf.truncated_normal_initializer(stddev=stddev, dtype=dtype))
  if wd is not None:
    weight_decay = tf.multiply(tf.nn.l2_loss(var), wd, name='weight_loss')
    tf.add_to_collection('losses', weight_decay)
  return var


def distorted_inputs():
  """Construct distorted input for CIFAR training using the Reader ops.

  Returns:
    images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
    labels: Labels. 1D tensor of [batch_size] size.

  Raises:
    ValueError: If no data_dir
  """
  if not FLAGS.data_dir:
    raise ValueError('Please supply a data_dir')
  data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-py')
  images, labels = cifar10_input.distorted_inputs(data_dir=data_dir,
                                                  batch_size=FLAGS.batch_size)
  if FLAGS.use_fp16:
    images = tf.cast(images, tf.float16)
    labels = tf.cast(labels, tf.float16)
  return images, labels


def inputs(eval_data):
  """Construct input for CIFAR evaluation using the Reader ops.

  Args:
    eval_data: bool, indicating if one should use the train or eval data set.

  Returns:
    images: Images. 4D tensor of [batch_size, IMAGE_SIZE, IMAGE_SIZE, 3] size.
    labels: Labels. 1D tensor of [batch_size] size.

  Raises:
    ValueError: If no data_dir
  """
  if not FLAGS.data_dir:
    raise ValueError('Please supply a data_dir')
  data_dir = os.path.join(FLAGS.data_dir, 'cifar-10-batches-py')
  images, labels = cifar10_input.inputs(eval_data=eval_data,
                                        data_dir=data_dir,
                                        batch_size=FLAGS.batch_size)
  if FLAGS.use_fp16:
    images = tf.cast(images, tf.float16)
    labels = tf.cast(labels, tf.float16)
  return images, labels



#开始建立网络,第一层卷积层的 weight 不进行 L2正则,因此 kernel(wd) 这一项设为0,建立值为0的 biases,
# conv1的结果由 ReLu 激活,由 _activation_summary() 进行汇总;然后建立第一层池化层,
# 最大池化尺寸和步长不一致可以增加数据的丰富性;最后建立 LRN 层
def inference(images):
  """Build the CIFAR-10 model.

  Args:
    images: Images returned from distorted_inputs() or inputs().

  Returns:
    Logits.
  """
  # We instantiate all variables using tf.get_variable() instead of
  # tf.Variable() in order to share variables across multiple GPU training runs.
  # If we only ran this model on a single GPU, we could simplify this function
  # by replacing all instances of tf.get_variable() with tf.Variable().
  #
  # conv1
  with tf.variable_scope('conv1') as scope:
    kernel = _variable_with_weight_decay('weights',
                                         shape=[5, 5, 3, 64],
                                         stddev=5e-2,
                                         wd=0.0)
    conv = tf.nn.conv2d(images, kernel, [1, 1, 1, 1], padding='SAME')
    biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.0))
    pre_activation = tf.nn.bias_add(conv, biases)
    conv1 = tf.nn.relu(pre_activation, name=scope.name)
    _activation_summary(conv1)

  # pool1
  pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1],
                         padding='SAME', name='pool1')


  # norm1 局部相响应归一化
  # LRN层模仿了生物神经系统的
  # "侧抑制"
  # 机制,对局部神经元的活动创建竞争环境,使得其中响应比较大的值变得相对更大,并抑制其他反馈较小的神经元,增强了模型的泛化能力,LRN
  # 对Relu 这种没有上限边界的激活函数会比较有用,因为它会从附近的多个卷积核的响应中挑选比较大的反馈,但不适合
  # sigmoid这种有固定边界并且能抑制过大的激活函数。
  norm1 = tf.nn.lrn(pool1, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
                    name='norm1')

  # conv2
  #第二层卷积层与第一层,除了输入参数的改变之外,将 biases 值全部初始化为0.1,
  # 调换最大池化和 LRN 层的顺序,先进行LRN,再使用最大池化层。
  with tf.variable_scope('conv2') as scope:
    kernel = _variable_with_weight_decay('weights',
                                         shape=[5, 5, 64, 64],
                                         stddev=5e-2,
                                         wd=0.0)
    conv = tf.nn.conv2d(norm1, kernel, [1, 1, 1, 1], padding='SAME')
    biases = _variable_on_cpu('biases', [64], tf.constant_initializer(0.1))
    pre_activation = tf.nn.bias_add(conv, biases)
    conv2 = tf.nn.relu(pre_activation, name=scope.name)
    _activation_summary(conv2)

  # norm2
  norm2 = tf.nn.lrn(conv2, 4, bias=1.0, alpha=0.001 / 9.0, beta=0.75,
                    name='norm2')
  # pool2
  pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1],
                         strides=[1, 2, 2, 1], padding='SAME', name='pool2')

  # local3
  #第三层全连接层 ,需要先把前面的卷积层的输出结果全部 flatten,
  # 使用 tf.reshape 函数将每个样本都变为一维向量,使用 get_shape 函数获取数据扁平化之后的长度;
  # 然后对全连接层的 weights 和 biases 进行初始化,为了防止全连接层过拟合,设置一个非零的 wd 值0.004,
  # 让这一层的所有参数都被 L2正则所约束,最后依然使用 Relu 激活函数进行非线性化。
  # 同理,可以建立第四层全连接层。
  with tf.variable_scope('local3') as scope:
    # Move everything into depth so we can perform a single matrix multiply.
    reshape = tf.reshape(pool2, [FLAGS.batch_size, -1])
    dim = reshape.get_shape()[1].value
    weights = _variable_with_weight_decay('weights', shape=[dim, 384],
                                          stddev=0.04, wd=0.004)
    biases = _variable_on_cpu('biases', [384], tf.constant_initializer(0.1))
    local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)
    _activation_summary(local3)

  # local4
  with tf.variable_scope('local4') as scope:
    weights = _variable_with_weight_decay('weights', shape=[384, 192],
                                          stddev=0.04, wd=0.004)
    biases = _variable_on_cpu('biases', [192], tf.constant_initializer(0.1))
    local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name=scope.name)
    _activation_summary(local4)

  # linear layer(WX + b),
  # We don't apply softmax here because
  # tf.nn.sparse_softmax_cross_entropy_with_logits accepts the unscaled logits
  # and performs the softmax internally for efficiency.
  #最后的 softmax_linear 层,先创建这一层的 weights 和 biases,不添加L2正则化。
  # 在这个模型中,不像之前的例子使用 sotfmax 输出最后的结果,因为将 softmax 的操作放在来计算 loss 的部分,
  # 将 softmax_linear 的线性返回值 logits 与 labels 计算 loss,
  with tf.variable_scope('softmax_linear') as scope:
    weights = _variable_with_weight_decay('weights', [192, NUM_CLASSES],
                                          stddev=1/192.0, wd=0.0)
    biases = _variable_on_cpu('biases', [NUM_CLASSES],
                              tf.constant_initializer(0.0))
    softmax_linear = tf.add(tf.matmul(local4, weights), biases, name=scope.name)
    _activation_summary(softmax_linear)

  return softmax_linear

#损失函数
#通过 tf.nn.softmax 后的 logits 值(属于每个类别的概率值)
def loss(logits, labels):
  """Add L2Loss to all the trainable variables.

  Add summary for "Loss" and "Loss/avg".
  Args:
    logits: Logits from inference().
    labels: Labels from distorted_inputs or inputs(). 1-D tensor
            of shape [batch_size]

  Returns:
    Loss tensor of type float.
  """
 # Calculate the average cross entropy loss across the batch.
  labels = tf.cast(labels, tf.int64)

  #在 CIFAR-10 中,labels 的 shape 为 [batch_size],每个样本的 label 为0到9的一个数,代表10个分类,
  # 这些类之间是相互排斥的,每个 CIFAR-10 图片只能被标记为唯一的一个标签:一张图片可能是一只狗或一辆卡车,而不能两者都是。
  # 因此我们需要对 label 值 onehot encoding,转化过程比较繁琐,
  # 新版的 TensorFlow API 支持对唯一值 labels 的 sparse_to_dense,只需要一步:
  cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
      labels=labels, logits=logits, name='cross_entropy_per_example')
  cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')

  #这里的 labels 的 shape 为 [batch_size, 1]。
  # 再使用 tf.add_to_collection 把 cross entropy 的 loss 添加到整体 losses 的 collection 中。
  #  最后,使用 tf.add_n 将整体 losses 的 collection中 的全部 loss 求和,得到最终的 loss 并返回,
  # 其中包含 cross entropy loss,还有后两个全连接层中的 weight 的 L2 loss
  tf.add_to_collection('losses', cross_entropy_mean)

  # The total loss is defined as the cross entropy loss plus all of the weight
  # decay terms (L2 loss).
  return tf.add_n(tf.get_collection('losses'), name='total_loss')


def _add_loss_summaries(total_loss):
  """Add summaries for losses in CIFAR-10 model.

  Generates moving average for all losses and associated summaries for
  visualizing the performance of the network.

  Args:
    total_loss: Total loss from loss().
  Returns:
    loss_averages_op: op for generating moving averages of losses.
  """
  # Compute the moving average of all individual losses and the total loss.
  # 创建一个新的指数滑动均值对象
  loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')

  # 从字典集合中返回关键字'losses'对应的所有变量,包括交叉熵损失和正则项损失
  losses = tf.get_collection('losses')

  # 创建'shadow variables'并添加维护滑动均值的操作
  # apply() 方法会添加 trained variables 的 shadow copies,并添加操作来维护变量的滑动均值到 shadow copies。
  # 滑动均值是通过指数衰减计算得到的,shadow variable 的初始化值和 trained variables 相同,
  # 其更新公式为 shadow_variable = decay * shadow_variable + (1 - decay) * variable。
  loss_averages_op = loss_averages.apply(losses + [total_loss])

  # Attach a scalar summary to all individual losses and the total loss; do the
  # same for the averaged version of the losses.
  for l in losses + [total_loss]:
    # Name each loss as '(raw)' and name the moving average version of the loss
    # as the original loss name.
    tf.summary.scalar(l.op.name + ' (raw)', l)
    tf.summary.scalar(l.op.name, loss_averages.average(l))

  return loss_averages_op


def train(total_loss, global_step):
  """Train CIFAR-10 model.

  Create an optimizer and apply to all trainable variables. Add moving
  average for all trainable variables.

  Args:
    total_loss: Total loss from loss().
    global_step: Integer Variable counting the number of training steps
      processed.
  Returns:
    train_op: op for training.
  """
  # Variables that affect learning rate.
  num_batches_per_epoch = NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN / FLAGS.batch_size
  decay_steps = int(num_batches_per_epoch * NUM_EPOCHS_PER_DECAY)

  # Decay the learning rate exponentially based on the number of steps.
  #首先定义学习率(learning rate),并设置随迭代次数衰减,并进行 summary:
  lr = tf.train.exponential_decay(INITIAL_LEARNING_RATE,
                                  global_step,
                                  decay_steps,
                                  LEARNING_RATE_DECAY_FACTOR,
                                  staircase=True)
  tf.summary.scalar('learning_rate', lr)

  # Generate moving averages of all losses and associated summaries.
  #对 loss 生成滑动均值和汇总,通过使用指数衰减,来维护变量的滑动均值(Moving Average)。
  #当训练模型时,维护训练参数的滑动均值是有好处的,在测试过程中使用滑动参数比最终训练的参数值本身,会提高模型的实际性能即准确率。
  loss_averages_op = _add_loss_summaries(total_loss) # 损失变量的更新操作

  # Compute gradients.
  #定义训练方法与目标,tf.control_dependencies 是一个 context manager,控制节点执行顺序,先执行[ ]中的操作,再执行 context 中的操作:
  with tf.control_dependencies([loss_averages_op]):
    opt = tf.train.GradientDescentOptimizer(lr)#优化器  随机梯度下降法
    grads = opt.compute_gradients(total_loss)# 返回计算出的(gradient, variable) pairs

  # Apply gradients.
  #返回一步梯度更新操作
  apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)

  # Add histograms for trainable variables.
  for var in tf.trainable_variables():
    tf.summary.histogram(var.op.name, var)

  # Add histograms for gradients.
  for grad, var in grads:
    if grad is not None:
      tf.summary.histogram(var.op.name + '/gradients', grad)

  # Track the moving averages of all trainable variables.
  #最后,动态调整衰减率,返回模型参数变量的滑动更新操作即 train op:
  variable_averages = tf.train.ExponentialMovingAverage(
      MOVING_AVERAGE_DECAY, global_step)
  variables_averages_op = variable_averages.apply(tf.trainable_variables())

  with tf.control_dependencies([apply_gradient_op, variables_averages_op]):
    train_op = tf.no_op(name='train')

  return train_op


def maybe_download_and_extract():
  """Download and extract the tarball from Alex's website."""
  dest_directory = FLAGS.data_dir
  if not os.path.exists(dest_directory):
    os.makedirs(dest_directory)
  filename = DATA_URL.split('/')[-1]
  filepath = os.path.join(dest_directory, filename)
  if not os.path.exists(filepath):
    def _progress(count, block_size, total_size):
      sys.stdout.write('\r>> Downloading %s %.1f%%' % (filename,
          float(count * block_size) / float(total_size) * 100.0))
      sys.stdout.flush()
    filepath, _ = urllib.request.urlretrieve(DATA_URL, filepath, _progress)
    print()
    statinfo = os.stat(filepath)
    print('Successfully downloaded', filename, statinfo.st_size, 'bytes.')
  extracted_dir_path = os.path.join(dest_directory, 'cifar-10-batches-py')
  if not os.path.exists(extracted_dir_path):
    tarfile.open(filepath, 'r:gz').extractall(dest_directory)
cifar10_train.py修改后:

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

"""A binary to train CIFAR-10 using a single GPU.

Accuracy:
cifar10_train.py achieves ~86% accuracy after 100K steps (256 epochs of
data) as judged by cifar10_eval.py.

Speed: With batch_size 128.

System        | Step Time (sec/batch)  |     Accuracy
------------------------------------------------------------------
1 Tesla K20m  | 0.35-0.60              | ~86% at 60K steps  (5 hours)
1 Tesla K40m  | 0.25-0.35              | ~86% at 100K steps (4 hours)

Usage:
Please see the tutorial and website for how to download the CIFAR-10
data set, compile the program and train the model.

http://tensorflow.org/tutorials/deep_cnn/
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from datetime import datetime
import time

import tensorflow as tf

import cifar10

parser = cifar10.parser

parser.add_argument('--train_dir', type=str, default='/tmp/cifar10_data_py/cifar10_train',
                    help='Directory where to write event logs and checkpoint.')

parser.add_argument('--max_steps', type=int, default=10000,
                    help='Number of batches to run.')

parser.add_argument('--log_device_placement', type=bool, default=False,
                    help='Whether to log device placement.')

parser.add_argument('--log_frequency', type=int, default=10,
                    help='How often to log results to the console.')


def train():
  """Train CIFAR-10 for a number of steps."""
  # 指定当前图为默认graph
  with tf.Graph().as_default():
      # 设置trainable=False,是因为防止训练过程中对global_step变量也进行滑动更新操作 global_step = tf.Variable(0, trainable=False)
    global_step = tf.train.get_or_create_global_step()

    # Get images and labels for CIFAR-10.
    # Force input pipeline to CPU:0 to avoid operations sometimes ending up on
    # GPU and resulting in a slow down.
    with tf.device('/cpu:0'):
      images, labels = cifar10.distorted_inputs()

    # Build a Graph that computes the logits predictions from the
    # inference model.
    logits = cifar10.inference(images)

    # Calculate loss.
    loss = cifar10.loss(logits, labels)

    # Build a Graph that trains the model with one batch of examples and
    # updates the model parameters.
    train_op = cifar10.train(loss, global_step)

    class _LoggerHook(tf.train.SessionRunHook):
      """Logs loss and runtime."""

      def begin(self):
        self._step = -1
        self._start_time = time.time()

      def before_run(self, run_context):
        self._step += 1
        return tf.train.SessionRunArgs(loss)  # Asks for loss value.

      def after_run(self, run_context, run_values):
        if self._step % FLAGS.log_frequency == 0:
          current_time = time.time()
          duration = current_time - self._start_time
          self._start_time = current_time

          loss_value = run_values.results
          examples_per_sec = FLAGS.log_frequency * FLAGS.batch_size / duration
          sec_per_batch = float(duration / FLAGS.log_frequency)

          format_str = ('%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
                        'sec/batch)')
          print (format_str % (datetime.now(), self._step, loss_value,
                               examples_per_sec, sec_per_batch))

    with tf.train.MonitoredTrainingSession(
        checkpoint_dir=FLAGS.train_dir,
        hooks=[tf.train.StopAtStepHook(last_step=FLAGS.max_steps),
               tf.train.NanTensorHook(loss),
               _LoggerHook()],
        config=tf.ConfigProto(
            log_device_placement=FLAGS.log_device_placement)) as mon_sess:
      while not mon_sess.should_stop():
        mon_sess.run(train_op)


def main(argv=None):  # pylint: disable=unused-argument
  cifar10.maybe_download_and_extract()
  if tf.gfile.Exists(FLAGS.train_dir):
    tf.gfile.DeleteRecursively(FLAGS.train_dir)
  tf.gfile.MakeDirs(FLAGS.train_dir)
  train()


if __name__ == '__main__':
  FLAGS = parser.parse_args()
  tf.app.run()


#tensorboard  --logdir=D:/tmp/cifar10_data_py/cifar10_train
注意,路径部分问题以及之前训练后的cifar10_train文件夹已存在导致出错只有将路径改对,并且删除之前的训练生成的文件夹就可以运行啦。


参考文献链接:

http://www.cs.toronto.edu/~kriz/cifar.html

https://github.com/tensorflow/models/tree/master/tutorials/image/cifar10


你可能感兴趣的:(机器学习)