加载和调用VGG19模型计算VGG_loss

1.加载代码

# Assume input range is [0, 1]
class VGGFeatureExtractor(nn.Module):
    def __init__(self,
                 feature_layer=34,
                 use_bn=False,
                 use_input_norm=True,
                 device=torch.device('cpu')):
        super(VGGFeatureExtractor, self).__init__()
        if use_bn:
            model = torchvision.models.vgg19_bn(pretrained=True)
        else:
            model = torchvision.models.vgg19(pretrained=True)
        self.use_input_norm = use_input_norm
        if self.use_input_norm:
            mean = torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(device)
            # [0.485-1, 0.456-1, 0.406-1] if input in range [-1,1]
            std = torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(device)
            # [0.229*2, 0.224*2, 0.225*2] if input in range [-1,1]
            self.register_buffer('mean', mean)
            self.register_buffer('std', std)
        self.features = nn.Sequential(*list(model.features.children())[:(feature_layer + 1)])
        # No need to BP to variable
        for k, v in self.features.named_parameters():
            v.requires_grad = False

    def forward(self, x):
        if self.use_input_norm:
            x = (x - self.mean) / self.std
        output = self.features(x)
        return output

2.调用模型

def define_F(opt, use_bn=False):
    gpu_ids = opt['gpu_ids']
    device = torch.device('cuda' if gpu_ids else 'cpu')
    # pytorch pretrained VGG19-54, before ReLU.
    if use_bn:
        feature_layer = 49
    else:
        feature_layer = 34
    netF = arch.VGGFeatureExtractor(feature_layer=feature_layer, use_bn=use_bn, \
        use_input_norm=True, device=device)
    # netF = arch.ResNet101FeatureExtractor(use_input_norm=True, device=device)
    if gpu_ids:
        netF = nn.DataParallel(netF)
    netF.eval()  # No need to train
    return netF

你可能感兴趣的:(深度学习)