Apache HBase简介
Apache HBase(Hadoop DataBase)是一个高可靠行、高性能、面向列、可伸缩的分布式存储系统,利用HBase技术可以在廉价的PC上搭建起大规模结构化存储集群。
HBase是Google Bigtable的开源实现,类似Google Bigtable利用GFS作为文件存储系统,HBase利用Hadoop HDFS作为其文件存储系统;Google运行MapReduce来处理Bigtable中的海量数据,HBase同样利用Hadoop MapReduce来处理HBase中的海量数据;Google Bigtable利用Chubby作为协同服务,HBase利用Zookeeper作为对应。
HBase是一种"NoSQL"数据库,"NoSQL"是一个通用词表示数据库不是RDBMS,后者支持SQL作为主要访问手段。有许多种NoSQL数据库,比如:BerkeleyDB是本地NoSQL数据库例子,而HBase是大型分布式数据库。从技术上来说,HBase更像是"Data Store(数据存储)"多于"Data Base(数据库)",因为HBase缺少很多RDBMS的特性,如列类型、第二索引、触发器、高级查询语言等。
然而HBase有许多特征同时支持多元化和模块化扩充。HBase集群通过增加RegionServer进行扩展,而且只需要将它可以放到普通的服务器中即可。例如:如果集群从10扩充到20个RegionServer,存储空间和处理容量都同时翻倍。RDBMS也能进行扩充,但是仅针对某个点---特别是对一个单独数据库服务器的带下---同时,为了更好的性能,需要依赖特殊的硬件和存储设备,而HBase并不需要这些。
HBase有如下特性:
---
强一致性读写:HBase不是"eventually consistent(最终一致性)"数据存储,这让它很适合高速计数聚合类任务;
---
自动分片(Automatic sharding):HBase表通过Region分布在集群中,数据增长时,Region会自动分配并重新分布;
---
RegionServer自动故障移除;
---
Hadoop/HDFS集成:HBase支持开箱即用地支持HDFS作为他的分布式文件系统;
---
MapReduce:HBase通过MapReduce支持大并发处理;
---
Java客户端API:HBase支持易于使用的JavaAPI进行编程访问;
---
Thrift/REST API:HBase支持Thirft和REST作为非Java前端的访问;
---
Block Cache和BloomFilter:对于大容量查询优化,HBase支持Block Cache和 Bloom Filter;
---
运维管理:HBase支持JMX通过内置网页用于运维。
HBase的应用场景
首先,HBase不适合所有的场景。
1.确保有足够多的数据,如果有上亿或者上千亿行数据,HBase是很好的备选。如果只有上千行或者上百万行,则用传统的RDBMS可能是更好的选择。因为所有数据可以在一两个节点保存,集群其他节点可能闲置。
2.确定可以不依赖左右RDBMS的额外特性(如:列数据类型、第二索引、事务、高级查询语言等)。
3.确定有足够的硬件,因为HDFS在小于5个数据节点时,基本上体现不出它的优势。
注:HBase能在单独的笔记本上运行良好,到那时这应仅当成开发阶段的配置。
HBase的数据模型比较简单,数据按照rowkey排序存放,适合HBase存储的数据总结如下:
===以实体为中心的数据
===以事件为中心的数据
这些数据有的是结构化数据,有的是半结构或非结构化数据。HBase的“稀疏矩阵”设计,使其对应非结构化数据存储时能够得心应手,但在外面的实际应用场景中,结构化数据存储已然占据了比较重的比例。由于HBase仅提供了基于rowkey的单维度索引能力,在应对一些具体场景时,已然还需要基于哈色之上构建一些专业的能力。
HBase的优缺点
优点:
---列可以动态增加,并且列为空就不存储数据,节省存储空间
---自动切分数据,使得数据存储自动具有水平扩展
---可以提供高并发读写操作
---与Hadoop MapReduce相结合有利于数据分析
---容错性好
---非常灵活的模式设计(没有固定模式的限制)
---可以跟Hive集成,使用累SQL查询
---自动故障转移
---客户端接口易于适应
---行级别原子性,即:PUT操作一定是完全成功或者完全失败
---版权免费
缺点:
---不能支持条件查询,只支持按照rowkey来查询
---容易产生单点故障(在只是用一个HMaster的时候)
---不支持事务
---JOIN不是数据库层支持的,而需要用MapReduce
---稚嫩在主键上索引和排序
---没有内置的身份和权限认证
HBase与Hadoop/HDFS的差异
HDFS是分布式文件系统,适合保存大文件,官方宣称它并非普通用途的文件系统,不提供文件的个别记录和快速查询。另一方面,HBase基于HDFS,并能够提供大表的记录快速查找和更新。这有时可能会引起概念混乱:HBase内部将数据放到索引好的"StoreFiles"存储文件中,以便提供高速查询,而存储文件位于HDFS中。
问1:HBase中的数据为何不直接存在HDFS上?
===HBase中存储的海量数据记录,通常在几百bytes到kb级别,如果将这些数据直接存储到HDFS上,会导致大量的小文件产生,为HDFS的元数据管理节点(NameNode)带来沉重的压力。
问2:文件能否直接存储于HBase里面?
===如果是几Mb的文件,其实也可以直接存储于HBase中,我们暂且将这类文件称之为小文件,HBase提供了一个名为MOB的特性来应对这类小文件的存储。如果是更大的文件,强烈不建议用HBase来存储。
HBase的基本概念
关于Apache HBase官方定义是:Apache HBase is the Hadoop database, a distributed, scalable, big data store.
即:HBase是基于Hadoop构建的一个分布式的、可伸缩的、海量数据存储系统。
在HBase的数据被存储在表中,具有行和列。这和关系型数据库(RDBMS)中的术语重叠,但是在概念上它们不是一类。相反,应该将HBase的表党委是一个多维的map结构,来方便理解。
1.术语
---Table(表):HBase table由多个row组成
---Row(行):每一row代表着一个数据对象,每一row都是以一个rowkey和一个或多个column组成。rowkey是每个数据对象的唯一标识,按字母顺序排列,即row也是按照这个顺序来进行存储的。所以rowkey的设计相当重要。一个重要的原则是:相关的row要存储在接近的位置。
---Column(列):column由column family和column qualifier组成,由冒号进行间隔。如:family:qualifier。
---Column Family(列族):在HBase,column family是一些column的集合。一个column family所有的column成员是有着相同的前缀的。比如,courses:history和courses:math都是courses的成员。冒号(:)是column family的分隔符,用来区分前缀和列名。column前缀必须是可打印的字符,剩下的部分列名可以是任意字节数组,column family必须在table建立时声明。column随时可以新建。在物理上,一个的column family成员在文件系统上都是存储在一起的。因为存储优化都是针对column family级别的,这就意味着,一个column family的所有成员都是用相同的方式访问的。
---Column Qualifier(列限定符):column family中的数据通过column qualifier来进行映射。column qualifier也没有特定的数据类型,以二进制字节来存储。虽然column family是在table创建时就固定了,但column qualifier是可变的,可能在不同的row之间有很大的不同。
---Cell(单元格):cell是row、column family和column qualifier的组合,包含了一个值和一个timestamp,用于标识值得版本。
---TimeStamp(时间戳):每个值都会有一个timestamp,作为该值特定版本的标识。默认情况下,timestamp代表了数据被写入RegionServer的时间,但你也可以在把数据放到cell时,指定不同的timestamp。
2.map
HBase/BigTable的核心数据结构是map,不同的编程语言针对 map 有不同的术语,比如 associative array(PHP)、associative array(Python),Hash(Ruby)或 Object (JavaScript)。
简单来说,map 就是 key-value 对集合。下面是一个用 JSON 格式来表达 map 的例子:
{
"zzzzz" : "woot",
"xyz" : "hello",
"aaaab" : "world",
"1" : "x",
"aaaaa" : "y"
}
3.分布式
HBase/Bigtable 都是建立在分布式系统上的,HBase 基于 Hadoop Distributed File System (HDFS) 或者 Amazon’s Simple Storage Service(S3),而 Bigtable 使用 Google File System(GFS)。它们要解决的一个问题就是数据的同步。这里不讨论如何做到数据同步。 HBase/Bigtable 可以部署在成千上万的机器上来分散访问压力。
4.排序
和一般的 map 实现有所区别,HBase/Bigtable 中的 map 是按字母顺序严格排序的。这就是说,对于 row key 是“aaaaa”的旁边 row key 应该是 “aaaab”,而与 row key 是“zzzzz”离得较远。
还是以上面的 JSON 为例,一个排好序的例子如下:
{
"1" : "x",
"aaaaa" : "y",
"aaaab" : "world",
"xyz" : "hello",
"zzzzz" : "woot"
}
在一个大数据量的系统里面,排序很重要,特别是 row key 的设置策略决定了查询的性能。比如网站的域名,row key 就是域名,在设计时要将域名反转(例如,org.apache.www、org.apache.mail、org.apache.jira)。
5.多维
多维 map,即 map 里面嵌套 map。例如:
{
"1" : {
"A" : "x",
"B" : "z"
},
"aaaaa" : {
"A" : "y",
"B" : "w"
},
"aaaab" : {
"A" : "world",
"B" : "ocean"
},
"xyz" : {
"A" : "hello",
"B" : "there"
},
"zzzzz" : {
"A" : "woot",
"B" : "1337"
}
}
6.时间版本
在查询中不指定时间,返回的将是最近的一个时间的版本。如果给出 timestamp,返回的将是早于这个时间的数值。例如: 查询 row/column 是“aaaaa”/“A:foo”的,将返回 y;查询 row/column/timestamp 是“aaaaa”/“A:foo”/10的,将返回 m;查询 row/column/timestamp 是“aaaaa”/“A:foo”/2的,将返回 null。
{
// ...
"aaaaa" : {
"A" : {
"foo" : {
15 : "y",
4 : "m"
},
"bar" : {
15 : "d",
}
},
"B" : {
"" : {
6 : "w"
3 : "o"
1 : "w"
}
}
},
// ...
}
7.概念视图
下面表格是一个名为 webtable 的 table ,包含了两个 row(com.cnn.www 和 com.example.www)和三个 column family(contents、 anchor和people)。第一个 row(com.cnn.www)中,anchor 包含了两个 column(anchor: cssnsi.com和 anchor: my.look.ca),contents包含了一个 column(contents:html)。在这个例子里面,row key 是com.cnn.www的 row 包含了5个版本,而 row key 是com.example.www的 row 包含了1个版本。column qualifier 为 contents:html包含了给定网站的完整的 HTML。column family 是anchor的每个 qualifier 包含了网站的链接。人们列族代表与网站相关的人。column family 是people关联的是网站的人物资料。
Row Key |
Timestamp |
ColumnFamily contents |
ColumnFamily anchor |
ColumnFamily people |
“com.cnn.www” |
t9 |
|
anchor:cnnsi.com = “CNN” |
|
“com.cnn.www” |
t8 |
|
anchor:my.look.ca = “CNN.com” |
|
“com.cnn.www” |
t6 |
contents:html = “…” |
|
|
“com.cnn.www” |
t5 |
contents:html = “…” |
|
|
“com.cnn.www” |
t3 |
contents:html = “…” |
|
|
在这个表中显示为空的 cell 不占用空间,这使得 HBase 变得“稀疏”。除了表格方式来展现数据试图,也使用使用多维 map,如下:
{
"com.cnn.www": {
contents: {
t6: contents:html: "..."
t5: contents:html: "..."
t3: contents:html: "..."
}
anchor: {
t9: anchor:cnnsi.com = "CNN"
t8: anchor:my.look.ca = "CNN.com"
}
people: {}
}
"com.example.www": {
contents: {
t5: contents:html: "..."
}
anchor: {}
people: {
t5: people:author: "John Doe"
}
}
}
在这个表中显示为空的 cell 不占用空间,这使得 HBase 变得“稀疏”。除了表格方式来展现数据试图,也使用使用多维 map,如下:
{
"com.cnn.www": {
contents: {
t6: contents:html: "..."
t5: contents:html: "..."
t3: contents:html: "..."
}
anchor: {
t9: anchor:cnnsi.com = "CNN"
t8: anchor:my.look.ca = "CNN.com"
}
people: {}
}
"com.example.www": {
contents: {
t5: contents:html: "..."
}
anchor: {}
people: {
t5: people:author: "John Doe"
}
}
}
8.物理视图
尽管在概念视图里,table 可以被看成是一个稀疏的 row 的集合。但在物理上,它的是按照 column family 存储的。新的 column qualifier (column_family:column_qualifier)可以随时添加进已有的 column family 。
下表是一个 ColumnFamily anchor
:
Row Key |
Timestamp |
Column Family anchor |
“com.cnn.www” |
t9 |
anchor:cnnsi.com = “CNN” |
“com.cnn.www” |
t8 |
anchor:my.look.ca = “CNN.com” |
下表是一个 ColumnFamily
contents
:
Row Key |
Timestamp |
ColumnFamily contents: |
“com.cnn.www” |
t6 |
contents:html = “…” |
“com.cnn.www” |
t5 |
contents:html = “…” |
“com.cnn.www” |
t3 |
contents:html = “…” |
值得注意的是在上面的概念视图中空白 cell 在物理上是不存储的,因为根本没有必要存储。因此若一个请求为要获取 t8 时间的
contents:html
,他的结果就是空。相似的,若请求为获取 t9 时间的
anchor:my.look.ca
,结果也是空。但是,如果不指明 timestamp,将会返回最新时间的 column。例如,如果请求为获取行键为“com.cnn.www”,没有指明 timestamp 的话,返回的结果是 t6 下的
contents:html
,t9下的
anchor:cnnsi.com
和 t8 下
anchor:my.look.ca
。
9.数据模型操作
四个主要的数据模型操作是 Get、Put、Scan 和 Delete。通过 Table 实例进行操作。有关 Table 的 API 可以参见 http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Table.html。
Get
Get 返回特定 row 的属性。 Get 通过 Table.get 执行。有关 Get 的 API 可以参见 http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Get.html。
Put
Put 要么向 table 增加新 row(如果 key 是新的)或更新 row(如果 key 已经存在)。 Put 通过 Table.put(writeBuffer)或 Table.batch(非 writeBuffer)执行。有关 Put 的 API 可以参见 http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Put.html。
Scan
Scan 允许多个 row 特定属性迭代。
下面是一个在 Table 表实例上的 Scan 示例。假设 table 有几行 row key 为“row1”、“row2”、“row3”,还有一些 row key 值为“abc1”、 “abc2” 和“abc3”。下面的示例展示 Scan 实例如何返回“row”打头的 row。
public static final byte[] CF = "cf".getBytes();
public static final byte[] ATTR = "attr".getBytes();
...
Table table = ... // instantiate a Table instance
Scan scan = new Scan();
scan.addColumn(CF, ATTR);
scan.setRowPrefixFilter(Bytes.toBytes("row"));
ResultScanner rs = table.getScanner(scan);
try {
for (Result r = rs.next(); r != null; r = rs.next()) {
// process result...
}
} finally {
rs.close(); // always close the ResultScanner!
}
注意,通常最简单的方法来指定用于 scan 停止点是采用 InclusiveStopFilter 类,其 API 可以参见 http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/filter/InclusiveStopFilter.html。
Delete
Delete 用于从 table 中删除 row。Delete 通过 Table.delete 执行。有关 Delete 的 API 可以参见 http://hbase.apache.org/apidocs/org/apache/hadoop/hbase/client/Delete.html。
HBase 没有修改数据的合适方法。所以 delete 通过创建名为 tombstones 的新标志进行处理。这些 tombstones 和死去的值,会在 major compaction 时清除掉。
参考引用
- http://hbase.apache.org/book.html
- Shashwat Shriparv.Learning Hbase中文版.周彦伟,蒲聪,娄帅译.北京:电子工业出版社,2015
- Lars George.HBase: The Definitive Guide, 2nd Edition.Sebastopol:O’Reilly Media,2016
- http://jimbojw.com/wiki/index.php?title=Understanding_Hbase_and_BigTable
原文地址:https://blog.csdn.net/kkkloveyou/article/details/52518325
***********************
心得之谈:欢迎指正,一起学习。
***********************