牛顿流体传热方程

牛顿流体传热方程

Equation of Energy for Newtonian Fluids with Constant ρ ρ and k k

控制方程表达通式:

ρC^pDTDt=k2T+μΦΦv ρ C ^ p D T D t = k ∇ 2 T + μ Φ Φ v


1.直角坐标系( x,y,z x , y , z )

直角坐标系Cartesian coordinates (  x,y,z   x,y,z  ): NO.
ρC^p(Tt+vxTx+vyTy+vzTz)=k[2Tx2+2Ty2+2Tz2]+μΦΦv ρ C ^ p ( ∂ T ∂ t + v x ∂ T ∂ x + v y ∂ T ∂ y + v z ∂ T ∂ z ) = k [ ∂ 2 T ∂ x 2 + ∂ 2 T ∂ y 2 + ∂ 2 T ∂ z 2 ] + μ Φ Φ v 1-1

2.圆柱坐标系( r,θ,z r , θ , z )

圆柱坐标系Cylindrical coordinates coordinates ( r, θ, z  r,  θ , z  ): NO.
ρC^p(Tt+vrTr+vθrTθ+vzTz)=k[1rr(rTr)+1r22Tθ2+2Tz2]+μΦΦv ρ C ^ p ( ∂ T ∂ t + v r ∂ T ∂ r + v θ r ∂ T ∂ θ + v z ∂ T ∂ z ) = k [ 1 r ∂ ∂ r ( r ∂ T ∂ r ) + 1 r 2 ∂ 2 T ∂ θ 2 + ∂ 2 T ∂ z 2 ] + μ Φ Φ v 2-1

3.球坐标系( r,θ,ϕ r , θ , ϕ )

球坐标系Spherical coordinates( r, θϕ  r,  θ ,  ϕ   ): NO.
ρC^p(Tt+vrTr+vθrTθ+vϕrsinθTϕ)=k[1r2r(r2Tr)+1r2sinθθ(sinθTθ)+1r2sin2θ2Tϕ2]+μΦΦv ρ C ^ p ( ∂ T ∂ t + v r ∂ T ∂ r + v θ r ∂ T ∂ θ + v ϕ r s i n θ ∂ T ∂ ϕ ) = k [ 1 r 2 ∂ ∂ r ( r 2 ∂ T ∂ r ) + 1 r 2 s i n θ ∂ ∂ θ ( s i n θ ∂ T ∂ θ ) + 1 r 2 s i n 2 θ ∂ 2 T ∂ ϕ 2 ] + μ Φ Φ v 3-1

参考文献

  1. R. Byron Bird, Warren E. stewart, Edwin N. Lightfoot.* Transport phenomena:Revised second edition* John Wiely &Sons, Inc.

你可能感兴趣的:(传热学【Heat,Transfer】,流体力学【Fluid,Mechanics】)