题意:给你一组[-50000,50000]的数,取3个数a,b,c,使得a+b=c。
思路:这题的思路是最后一小时看到FFT想到的,然后自学了一小时FFT,最后还是没搞出来。。
把每个数加上50000,这样就没有负数了,先把0拿出来,用FFT解决,再对0特殊处理一下。
#include
#include
#include
#include
using namespace std;
//kuangbin的FFT模版
const double PI = acos(-1.0);
struct complex
{
double r,i;
complex(double _r = 0,double _i = 0)
{
r = _r; i = _i;
}
complex operator +(const complex &b)
{
return complex(r+b.r,i+b.i);
}
complex operator -(const complex &b)
{
return complex(r-b.r,i-b.i);
}
complex operator *(const complex &b)
{
return complex(r*b.r-i*b.i,r*b.i+i*b.r);
}
};
void change(complex y[],int len)
{
int i,j,k;
for(i = 1, j = len/2;i < len-1;i++)
{
if(i < j)swap(y[i],y[j]);
k = len/2;
while( j >= k)
{
j -= k;
k /= 2;
}
if(j < k)j += k;
}
}
void fft(complex y[],int len,int on)
{
change(y,len);
for(int h = 2;h <= len;h <<= 1)
{
complex wn(cos(-on*2*PI/h),sin(-on*2*PI/h));
for(int j = 0;j < len;j += h)
{
complex w(1,0);
for(int k = j;k < j+h/2;k++)
{
complex u = y[k];
complex t = w*y[k+h/2];
y[k] = u+t;
y[k+h/2] = u-t;
w = w*wn;
}
}
}
if(on == -1)
for(int i = 0;i < len;i++)
y[i].r /= len;
}
const int MAXN = 800040;
complex x1[MAXN];
int a[MAXN/4];
long long num[MAXN];
long long sum[MAXN];
int main()
{
int n=0,all,temp;
long long num0=0;
scanf("%d",&all);
memset(num,0,sizeof(num));
memset(sum,0,sizeof(sum));
for(int i = 0;i < all;i++)
{
scanf("%d",&temp);
if(temp==0){
num0++;
}else{
a[n]=temp+50000;
num[a[n]]++;
sum[a[n]]++;
n++;
}
}
sort(a,a+n);
int len1 = a[n-1]+1;
int len = 1;
while( len < 2*len1 )len <<= 1;
for(int i = 0;i < len1;i++)
x1[i] = complex(num[i],0);
for(int i = len1;i < len;i++)
x1[i] = complex(0,0);
fft(x1,len,1);
for(int i = 0;i < len;i++)
x1[i] = x1[i]*x1[i];
fft(x1,len,-1);
for(int i = 0;i < len;i++)
num[i] = (long long)(x1[i].r+0.5);
len = 2*a[n-1];
//减去取同一个的情况
for(int i = 0;i < n;i++)
num[a[i]+a[i]]--;
long long ans=0;
int leni=a[n-1];//最大值
for(int i = 0;i <= leni;++i){
if(sum[i])ans+=num[i+50000]*sum[i];//对于每个num[i],因为加上了50000,所以应该是a+b=c+50000
} //乘与i的个数sum[i]就是当前的种数。
ans+=num[100000]*num0;//a+b=0;
if(num0!=0){
if(num0<3){
for(int i=0;i<=leni;++i){
if(sum[i]>=2)ans+=sum[i]*(sum[i]-1)*num0*2;//0+a=a //0,a,a的排列方式有C(2,1)*C(2,1) 再乘上 C(num0,1),C(sum[i],2)
}
}else if(num0>=3){
for(int i=0;i<=leni;++i){
if(sum[i]>=2)ans+=sum[i]*(sum[i]-1)*num0*2;
}
ans+=num0*(num0-1)*(num0-2);//0+0=0 //C(num0,3)*A(3,3)
}
}
printf("%lld\n",ans);
}