#encoding:utf-8
'''
kNN: k Nearest Neighbors
Input: inX: vector to compare to existing dataset (1xN)
dataSet: size m data set of known vectors (NxM)
labels: data set labels (1xM vector)
k: number of neighbors to use for comparison (should be an odd number)
Output: the most popular class label
'''
from numpy import * # 科学计算包
import operator # 运算符模块
# 导入数据
def createDataSet():
group =array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels = ['A','A','B','B']
return group, labels
# 实施kNN算法
def classify0(inX, dataSet, labels, k):
# 距离计算
dataSetSize = dataSet.shape[0] # 得到矩阵dataSet的行数
diffMat = tile(inX, (dataSetSize,1)) - dataSet # inX组成的矩阵减去矩阵dataSet
sqDiffMat = diffMat**2 # 使得到的矩阵中每个元素平方
sqDistances = sqDiffMat.sum(axis=1) # 矩阵中每行元素相加,得到距离数组
distances = sqDistances**0.5
# 选择距离最小的k个点
sortedDistIndicies = distances.argsort() # 返回距离数组中元素从小到大的索引值
classCount={} # 定义一个空字典
for i in range(k): # 对标签计数,加入字典classCount中
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
# 排序
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1)
, reverse=True) # 把字典classCount分解为元组列表,并按第二个元素的降序对元组排序
return sortedClassCount[0][0] # 返回发生频率最高的元素标签
运行结果:
>>> ================================ RESTART ================================
>>>
>>> import kNN
>>> group,lables=kNN.createDataSet()
>>> kNN.classify0([0,0],group,lables,3)
'B'
>>>
# encoding:utf-8
from numpy import *
import operator
from os import listdir
# kNN分类
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]
diffMat = tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1)
distances = sqDistances**0.5
sortedDistIndicies = distances.argsort()
classCount={}
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0]
# 从文本文件中解析数据
def file2matrix(filename):
fr = open(filename)
numberOfLines = len(fr.readlines()) #get the number of lines in the file
returnMat = zeros((numberOfLines,3)) #prepare matrix to return
classLabelVector = [] #prepare labels return
fr = open(filename) # 重新打开文件
index = 0
for line in fr.readlines():
line = line.strip() # 截取掉所有的回车字符
listFromLine = line.split('\t') # 分割
returnMat[index,:] = listFromLine[0:3] # 选取前3个元素
classLabelVector.append(int(listFromLine[-1])) # 最后一列元素加入到列表
index += 1
return returnMat,classLabelVector # 返回前3列元素组成的矩阵和最后一列元素组成的数组
# 归一化特征值
def autoNorm(dataSet):
minVals = dataSet.min(0) # 获得每列的最小值
maxVals = dataSet.max(0) # 获得每列的最大值
ranges = maxVals - minVals
normDataSet = zeros(shape(dataSet))
m = dataSet.shape[0] # 获取数据集的行数
normDataSet = dataSet - tile(minVals,(m,1))
normDataSet = normDataSet/tile(ranges,(m,1)) #element wise divide
return normDataSet, ranges, minVals
# 验证分类器(错误率)
def datingClassTest():
hoRatio = 0.10 # 测试集占整个训练集的10%、训练集占90%
datingDataMat,datingLabels = file2matrix('C:\\Users\\DQ\\Desktop\\datingTestSet.txt') #load data setfrom file
normMat, ranges, minVals = autoNorm(datingDataMat)
m = normMat.shape[0]
numTestVecs = int(m*hoRatio)
errorCount = 0.0
for i in range(numTestVecs): # 验证每一个测试数据
classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3)
print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i])
if (classifierResult != datingLabels[i]): errorCount += 1.0
print "the total error rate is: %f" % (errorCount/float(numTestVecs))
print errorCount
# 利用分类器分类
def classifyPerson():
resultList = ['not at all','in a small doses','in large doses']
percentTats = float(raw_input("percentage of time spent playing video games?"))
ffMiles = float(raw_input("frequent flier miles earned per year?"))
iceCream = float(raw_input("liters of ice cream consumed per year?"))
datingDataMat, datingLabels = file2matrix('C:\\Users\\DQ\\Desktop\\datingTestSet.txt')
normMat, ranges, minVals = autoNorm(datingDataMat)
inArr = array([ffMiles,percentTats,iceCream])
classifierResult = classify0((inArr-minVals)/ranges,normMat,datingLabels,3)
print('you will probably like this person:',resultList[classifierResult - 1])
运行结果:
>>> ================================ RESTART ================================
>>>
>>> import kNN
>>> kNN.datingClassTest() # 验证分类器(错误率)
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 1, the real answer is: 2
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 3, the real answer is: 1
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 3, the real answer is: 1
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 2, the real answer is: 3
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 3, the real answer is: 3
the classifier came back with: 2, the real answer is: 2
the classifier came back with: 1, the real answer is: 1
the classifier came back with: 3, the real answer is: 1
the total error rate is: 0.050000
5.0
>>> kNN.classifyPerson() # 利用分类器进行分类
percentage of time spent playing video games?10
frequent flier miles earned per year?10000
liters of ice cream consumed per year?0.5
('you will probably like this person:', 'in a small doses')
>>>
机器学习实战(中文版、英文版、源代码)