LIRE源代码分析 2:建立索引 提取特征向量 检索 [以颜色布局为例]

上一篇文章我们介绍了LIRE的基本接口,这篇我们来看一看它建立索引,提取特征向量和检索的过程。

一、建立索引(DocumentBuilder)

不同的特征向量提取方法的建立索引的类各不相同,它们都位于“net.semanticmetadata.lire.impl”中,如下图所示:

LIRE源代码分析 2:建立索引 提取特征向量 检索 [以颜色布局为例]_第1张图片

由图可见,每一种方法对应一个DocumentBuilder和一个ImageSearcher,类的数量非常的多,无法一一分析。在这里仅分析一个比较有代表性的:颜色布局。
颜色布局建立索引的类的名称是ColorLayoutDocumentBuilder,该类继承了AbstractDocumentBuilder,它的源代码如下所示:

package net.semanticmetadata.lire.impl;

import net.semanticmetadata.lire.AbstractDocumentBuilder;
import net.semanticmetadata.lire.DocumentBuilder;
import net.semanticmetadata.lire.imageanalysis.ColorLayout;
import net.semanticmetadata.lire.utils.ImageUtils;
import org.apache.lucene.document.Document;
import org.apache.lucene.document.Field;

import java.awt.image.BufferedImage;
import java.util.logging.Logger;

/**
 * Provides a faster way of searching based on byte arrays instead of Strings. The method
 * {@link net.semanticmetadata.lire.imageanalysis.ColorLayout#getByteArrayRepresentation()} is used
 * to generate the signature of the descriptor much faster.
 * User: Mathias Lux, [email protected]
 * Date: 30.06.2011
 */
public class ColorLayoutDocumentBuilder extends AbstractDocumentBuilder {
    private Logger logger = Logger.getLogger(getClass().getName());
    public static final int MAX_IMAGE_DIMENSION = 1024;

    public Document createDocument(BufferedImage image, String identifier) {
        assert (image != null);
        BufferedImage bimg = image;
        // Scaling image is especially with the correlogram features very important!
        // All images are scaled to guarantee a certain upper limit for indexing.
        if (Math.max(image.getHeight(), image.getWidth()) > MAX_IMAGE_DIMENSION) {
            bimg = ImageUtils.scaleImage(image, MAX_IMAGE_DIMENSION);
        }
        Document doc = null;
        logger.finer("Starting extraction from image [ColorLayout - fast].");
        ColorLayout vd = new ColorLayout();
        vd.extract(bimg);
        logger.fine("Extraction finished [ColorLayout - fast].");

        doc = new Document();
        doc.add(new Field(DocumentBuilder.FIELD_NAME_COLORLAYOUT_FAST, vd.getByteArrayRepresentation()));
        if (identifier != null)
            doc.add(new Field(DocumentBuilder.FIELD_NAME_IDENTIFIER, identifier, Field.Store.YES, Field.Index.NOT_ANALYZED));

        return doc;
    }
}
从源代码来看,其实主要就一个函数:createDocument(BufferedImage image, String identifier),该函数的流程如下所示:

1.如果输入的图像分辨率过大(在这里是大于1024),则将图像缩小。

2.新建一个LireFeature类型的对象vd。

3.调用vd.extract()提取特征向量。

4.调用vd.getByteArrayRepresentation()获得特征向量。

5.将获得的特征向量加入Document,返回Document。

二、提取特征向量

在ColorLayoutDocumentBuilder中,使用了一个类型为ColorLayout的对象vd,并且调用了vd的extract()方法:

 ColorLayout vd = new ColorLayout();  
 vd.extract(bimg);  
此外调用了vd的getByteArrayRepresentation()方法:

new Field(DocumentBuilder.FIELD_NAME_COLORLAYOUT_FAST, vd.getByteArrayRepresentation())  
在这里我们看一看ColorLayout是个什么类。ColorLayout位于“net.semanticmetadata.lire.imageanalysis”包中,如下图所示:

LIRE源代码分析 2:建立索引 提取特征向量 检索 [以颜色布局为例]_第2张图片

由图可见,这个包中有很多的类。这些类都是以检索方法的名字命名的。我们要找的ColorLayout类也在其中。看看它的代码吧:

package net.semanticmetadata.lire.imageanalysis;

import net.semanticmetadata.lire.imageanalysis.mpeg7.ColorLayoutImpl;
import net.semanticmetadata.lire.utils.SerializationUtils;

/**
 * Just a wrapper for the use of LireFeature.
 * Date: 27.08.2008
 * Time: 12:07:38
 *
 * @author Mathias Lux, [email protected]
 */
public class ColorLayout extends ColorLayoutImpl implements LireFeature {

    /*
        public String getStringRepresentation() {
        StringBuilder sb = new StringBuilder(256);
        StringBuilder sbtmp = new StringBuilder(256);
        for (int i = 0; i < numYCoeff; i++) {
            sb.append(YCoeff[i]);
            if (i + 1 < numYCoeff) sb.append(' ');
        }
        sb.append("z");
        for (int i = 0; i < numCCoeff; i++) {
            sb.append(CbCoeff[i]);
            if (i + 1 < numCCoeff) sb.append(' ');
            sbtmp.append(CrCoeff[i]);
            if (i + 1 < numCCoeff) sbtmp.append(' ');
        }
        sb.append("z");
        sb.append(sbtmp);
        return sb.toString();
    }

    public void setStringRepresentation(String descriptor) {
        String[] coeffs = descriptor.split("z");
        String[] y = coeffs[0].split(" ");
        String[] cb = coeffs[1].split(" ");
        String[] cr = coeffs[2].split(" ");

        numYCoeff = y.length;
        numCCoeff = Math.min(cb.length, cr.length);

        YCoeff = new int[numYCoeff];
        CbCoeff = new int[numCCoeff];
        CrCoeff = new int[numCCoeff];

        for (int i = 0; i < numYCoeff; i++) {
            YCoeff[i] = Integer.parseInt(y[i]);
        }
        for (int i = 0; i < numCCoeff; i++) {
            CbCoeff[i] = Integer.parseInt(cb[i]);
            CrCoeff[i] = Integer.parseInt(cr[i]);

        }
    }
     */

    /**
     * Provides a much faster way of serialization.
     *
     * @return a byte array that can be read with the corresponding method.
     * @see net.semanticmetadata.lire.imageanalysis.CEDD#setByteArrayRepresentation(byte[])
     */
    public byte[] getByteArrayRepresentation() {
        byte[] result = new byte[2 * 4 + numYCoeff * 4 + 2 * numCCoeff * 4];
        System.arraycopy(SerializationUtils.toBytes(numYCoeff), 0, result, 0, 4);
        System.arraycopy(SerializationUtils.toBytes(numCCoeff), 0, result, 4, 4);
        System.arraycopy(SerializationUtils.toByteArray(YCoeff), 0, result, 8, numYCoeff * 4);
        System.arraycopy(SerializationUtils.toByteArray(CbCoeff), 0, result, numYCoeff * 4 + 8, numCCoeff * 4);
        System.arraycopy(SerializationUtils.toByteArray(CrCoeff), 0, result, numYCoeff * 4 + numCCoeff * 4 + 8, numCCoeff * 4);
        return result;
    }

    /**
     * Reads descriptor from a byte array. Much faster than the String based method.
     *
     * @param in byte array from corresponding method
     * @see net.semanticmetadata.lire.imageanalysis.CEDD#getByteArrayRepresentation
     */
    public void setByteArrayRepresentation(byte[] in) {
        int[] data = SerializationUtils.toIntArray(in);
        numYCoeff = data[0];
        numCCoeff = data[1];
        YCoeff = new int[numYCoeff];
        CbCoeff = new int[numCCoeff];
        CrCoeff = new int[numCCoeff];
        System.arraycopy(data, 2, YCoeff, 0, numYCoeff);
        System.arraycopy(data, 2 + numYCoeff, CbCoeff, 0, numCCoeff);
        System.arraycopy(data, 2 + numYCoeff + numCCoeff, CrCoeff, 0, numCCoeff);
    }

    public double[] getDoubleHistogram() {
        double[] result = new double[numYCoeff + numCCoeff * 2];
        for (int i = 0; i < numYCoeff; i++) {
            result[i] = YCoeff[i];
        }
        for (int i = 0; i < numCCoeff; i++) {
            result[i + numYCoeff] = CbCoeff[i];
            result[i + numCCoeff + numYCoeff] = CrCoeff[i];
        }
        return result;
    }

    /**
     * Compares one descriptor to another.
     *
     * @param descriptor
     * @return the distance from [0,infinite) or -1 if descriptor type does not match
     */

    public float getDistance(LireFeature descriptor) {
        if (!(descriptor instanceof ColorLayoutImpl)) return -1f;
        ColorLayoutImpl cl = (ColorLayoutImpl) descriptor;
        return (float) ColorLayoutImpl.getSimilarity(YCoeff, CbCoeff, CrCoeff, cl.YCoeff, cl.CbCoeff, cl.CrCoeff);
    }
}
ColorLayout类继承了ColorLayoutImpl类,同时实现了LireFeature接口。其中的方法大部分都是实现了LireFeature接口的方法。先来看看LireFeature接口是什么样子的:

/**
 * This is the basic interface for all content based features. It is needed for GenericDocumentBuilder etc.
 * Date: 28.05.2008
 * Time: 14:44:16
 *
 * @author Mathias Lux, [email protected]
 */
public interface LireFeature {
    public void extract(BufferedImage bimg);

    public byte[] getByteArrayRepresentation();

    public void setByteArrayRepresentation(byte[] in);

    public double[] getDoubleHistogram();

    float getDistance(LireFeature feature);

    java.lang.String getStringRepresentation();

    void setStringRepresentation(java.lang.String s);
}

注:这里没有注释了,仅能靠自己的理解了。

我简要概括一下自己对这些接口函数的理解:

1.extract(BufferedImage bimg):提取特征向量

2.getByteArrayRepresentation():获取特征向量(返回byte[]类型)

3.setByteArrayRepresentation(byte[] in):设置特征向量(byte[]类型)

4.getDoubleHistogram():

5.getDistance(LireFeature feature):

6.getStringRepresentation():获取特征向量(返回String类型)

7.setStringRepresentation(Java.lang.String s):设置特征向量(String类型)

其中红色的是建立索引的过程中会用到的。

仔细看代码可以发现,所有的算法都实现了LireFeature接口,如下图所示:

LIRE源代码分析 2:建立索引 提取特征向量 检索 [以颜色布局为例]_第3张图片

三、检索(ImageSearcher)

我们继续看一下检索部分(ImageSearcher)。不同的方法的检索功能的类各不相同,它们都位于“net.semanticmetadata.lire.impl”中,如下图所示:

LIRE源代码分析 2:建立索引 提取特征向量 检索 [以颜色布局为例]_第4张图片

在这里仅分析一个比较有代表性的:颜色布局。前文已经分析过ColorLayoutDocumentBuilder,在这里我们分析一下ColorLayoutImageSearcher。源代码如下:

package net.semanticmetadata.lire.impl;

import net.semanticmetadata.lire.DocumentBuilder;
import net.semanticmetadata.lire.ImageDuplicates;
import net.semanticmetadata.lire.ImageSearchHits;
import net.semanticmetadata.lire.imageanalysis.ColorLayout;
import net.semanticmetadata.lire.imageanalysis.LireFeature;
import org.apache.lucene.document.Document;
import org.apache.lucene.index.IndexReader;

import java.io.FileNotFoundException;
import java.io.IOException;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.logging.Level;

/**
 * Provides a faster way of searching based on byte arrays instead of Strings. The method
 * {@link net.semanticmetadata.lire.imageanalysis.ColorLayout#getByteArrayRepresentation()} is used
 * to generate the signature of the descriptor much faster. First tests have shown that this
 * implementation is up to 4 times faster than the implementation based on strings
 * (for 120,000 images)
 * 

* User: Mathias Lux, [email protected] * Date: 30.06 2011 */ public class ColorLayoutImageSearcher extends GenericImageSearcher { public ColorLayoutImageSearcher(int maxHits) { super(maxHits, ColorLayout.class, DocumentBuilder.FIELD_NAME_COLORLAYOUT_FAST); } protected float getDistance(Document d, LireFeature lireFeature) { float distance = 0f; ColorLayout lf; try { lf = (ColorLayout) descriptorClass.newInstance(); byte[] cls = d.getBinaryValue(fieldName); if (cls != null && cls.length > 0) { lf.setByteArrayRepresentation(cls); distance = lireFeature.getDistance(lf); } else { logger.warning("No feature stored in this document ..."); } } catch (InstantiationException e) { logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage()); } catch (IllegalAccessException e) { logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage()); } return distance; } public ImageSearchHits search(Document doc, IndexReader reader) throws IOException { SimpleImageSearchHits searchHits = null; try { ColorLayout lireFeature = (ColorLayout) descriptorClass.newInstance(); byte[] cls = doc.getBinaryValue(fieldName); if (cls != null && cls.length > 0) lireFeature.setByteArrayRepresentation(cls); float maxDistance = findSimilar(reader, lireFeature); searchHits = new SimpleImageSearchHits(this.docs, maxDistance); } catch (InstantiationException e) { logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage()); } catch (IllegalAccessException e) { logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage()); } return searchHits; } public ImageDuplicates findDuplicates(IndexReader reader) throws IOException { // get the first document: SimpleImageDuplicates simpleImageDuplicates = null; try { if (!IndexReader.indexExists(reader.directory())) throw new FileNotFoundException("No index found at this specific location."); Document doc = reader.document(0); ColorLayout lireFeature = (ColorLayout) descriptorClass.newInstance(); byte[] cls = doc.getBinaryValue(fieldName); if (cls != null && cls.length > 0) lireFeature.setByteArrayRepresentation(cls); HashMap> duplicates = new HashMap>(); // find duplicates ... boolean hasDeletions = reader.hasDeletions(); int docs = reader.numDocs(); int numDuplicates = 0; for (int i = 0; i < docs; i++) { if (hasDeletions && reader.isDeleted(i)) { continue; } Document d = reader.document(i); float distance = getDistance(d, lireFeature); if (!duplicates.containsKey(distance)) { duplicates.put(distance, new LinkedList()); } else { numDuplicates++; } duplicates.get(distance).add(d.getFieldable(DocumentBuilder.FIELD_NAME_IDENTIFIER).stringValue()); } if (numDuplicates == 0) return null; LinkedList> results = new LinkedList>(); for (float f : duplicates.keySet()) { if (duplicates.get(f).size() > 1) { results.add(duplicates.get(f)); } } simpleImageDuplicates = new SimpleImageDuplicates(results); } catch (InstantiationException e) { logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage()); } catch (IllegalAccessException e) { logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage()); } return simpleImageDuplicates; } }

源代码里面重要的函数有3个:

float getDistance(Document d, LireFeature lireFeature):

ImageSearchHits search(Document doc, IndexReader reader):检索。最核心函数。

ImageDuplicates findDuplicates(IndexReader reader):目前还没研究。

ColorLayoutImageSearcher继承了一个类——GenericImageSearcher,看一下GenericImageSearcher的源代码:
package net.semanticmetadata.lire.impl;

import net.semanticmetadata.lire.AbstractImageSearcher;
import net.semanticmetadata.lire.DocumentBuilder;
import net.semanticmetadata.lire.ImageDuplicates;
import net.semanticmetadata.lire.ImageSearchHits;
import net.semanticmetadata.lire.imageanalysis.LireFeature;
import net.semanticmetadata.lire.utils.ImageUtils;
import org.apache.lucene.document.Document;
import org.apache.lucene.index.IndexReader;

import java.awt.image.BufferedImage;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.util.HashMap;
import java.util.LinkedList;
import java.util.List;
import java.util.TreeSet;
import java.util.logging.Level;
import java.util.logging.Logger;

/**
 * This file is part of the Caliph and Emir project: http://www.SemanticMetadata.net
 * 
Date: 01.02.2006 *
Time: 00:17:02 * * @author Mathias Lux, [email protected] */ public class GenericImageSearcher extends AbstractImageSearcher { protected Logger logger = Logger.getLogger(getClass().getName()); Class descriptorClass; String fieldName; private int maxHits = 10; protected TreeSet docs; public GenericImageSearcher(int maxHits, Class descriptorClass, String fieldName) { this.maxHits = maxHits; docs = new TreeSet(); this.descriptorClass = descriptorClass; this.fieldName = fieldName; } public ImageSearchHits search(BufferedImage image, IndexReader reader) throws IOException { logger.finer("Starting extraction."); LireFeature lireFeature = null; SimpleImageSearchHits searchHits = null; try { lireFeature = (LireFeature) descriptorClass.newInstance(); // Scaling image is especially with the correlogram features very important! BufferedImage bimg = image; if (Math.max(image.getHeight(), image.getWidth()) > GenericDocumentBuilder.MAX_IMAGE_DIMENSION) { bimg = ImageUtils.scaleImage(image, GenericDocumentBuilder.MAX_IMAGE_DIMENSION); } lireFeature.extract(bimg); logger.fine("Extraction from image finished"); float maxDistance = findSimilar(reader, lireFeature); searchHits = new SimpleImageSearchHits(this.docs, maxDistance); } catch (InstantiationException e) { logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage()); } catch (IllegalAccessException e) { logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage()); } return searchHits; } /** * @param reader * @param lireFeature * @return the maximum distance found for normalizing. * @throws java.io.IOException */ protected float findSimilar(IndexReader reader, LireFeature lireFeature) throws IOException { float maxDistance = -1f, overallMaxDistance = -1f; boolean hasDeletions = reader.hasDeletions(); // clear result set ... docs.clear(); int docs = reader.numDocs(); for (int i = 0; i < docs; i++) { // bugfix by Roman Kern if (hasDeletions && reader.isDeleted(i)) { continue; } Document d = reader.document(i); float distance = getDistance(d, lireFeature); assert (distance >= 0); // calculate the overall max distance to normalize score afterwards if (overallMaxDistance < distance) { overallMaxDistance = distance; } // if it is the first document: if (maxDistance < 0) { maxDistance = distance; } // if the array is not full yet: if (this.docs.size() < maxHits) { this.docs.add(new SimpleResult(distance, d)); if (distance > maxDistance) maxDistance = distance; } else if (distance < maxDistance) { // if it is nearer to the sample than at least on of the current set: // remove the last one ... this.docs.remove(this.docs.last()); // add the new one ... this.docs.add(new SimpleResult(distance, d)); // and set our new distance border ... maxDistance = this.docs.last().getDistance(); } } return maxDistance; } protected float getDistance(Document d, LireFeature lireFeature) { float distance = 0f; LireFeature lf; try { lf = (LireFeature) descriptorClass.newInstance(); String[] cls = d.getValues(fieldName); if (cls != null && cls.length > 0) { lf.setStringRepresentation(cls[0]); distance = lireFeature.getDistance(lf); } else { logger.warning("No feature stored in this document!"); } } catch (InstantiationException e) { logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage()); } catch (IllegalAccessException e) { logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage()); } return distance; } public ImageSearchHits search(Document doc, IndexReader reader) throws IOException { SimpleImageSearchHits searchHits = null; try { LireFeature lireFeature = (LireFeature) descriptorClass.newInstance(); String[] cls = doc.getValues(fieldName); if (cls != null && cls.length > 0) lireFeature.setStringRepresentation(cls[0]); float maxDistance = findSimilar(reader, lireFeature); searchHits = new SimpleImageSearchHits(this.docs, maxDistance); } catch (InstantiationException e) { logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage()); } catch (IllegalAccessException e) { logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage()); } return searchHits; } public ImageDuplicates findDuplicates(IndexReader reader) throws IOException { // get the first document: SimpleImageDuplicates simpleImageDuplicates = null; try { if (!IndexReader.indexExists(reader.directory())) throw new FileNotFoundException("No index found at this specific location."); Document doc = reader.document(0); LireFeature lireFeature = (LireFeature) descriptorClass.newInstance(); String[] cls = doc.getValues(fieldName); if (cls != null && cls.length > 0) lireFeature.setStringRepresentation(cls[0]); HashMap> duplicates = new HashMap>(); // find duplicates ... boolean hasDeletions = reader.hasDeletions(); int docs = reader.numDocs(); int numDuplicates = 0; for (int i = 0; i < docs; i++) { if (hasDeletions && reader.isDeleted(i)) { continue; } Document d = reader.document(i); float distance = getDistance(d, lireFeature); if (!duplicates.containsKey(distance)) { duplicates.put(distance, new LinkedList()); } else { numDuplicates++; } duplicates.get(distance).add(d.getFieldable(DocumentBuilder.FIELD_NAME_IDENTIFIER).stringValue()); } if (numDuplicates == 0) return null; LinkedList> results = new LinkedList>(); for (float f : duplicates.keySet()) { if (duplicates.get(f).size() > 1) { results.add(duplicates.get(f)); } } simpleImageDuplicates = new SimpleImageDuplicates(results); } catch (InstantiationException e) { logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage()); } catch (IllegalAccessException e) { logger.log(Level.SEVERE, "Error instantiating class for generic image searcher: " + e.getMessage()); } return simpleImageDuplicates; } public String toString() { return "GenericSearcher using " + descriptorClass.getName(); } }
下面来看看GenericImageSearcher中的search(BufferedImage image, IndexReader reader)函数的步骤(注:这个函数应该是用的最多的,输入一张图片,返回相似图片的结果集):

1.输入图片如果尺寸过大(大于1024),则调整尺寸。

2.使用extract()提取输入图片的特征值。

3.根据提取的特征值,使用findSimilar()查找相似的图片。

4.新建一个ImageSearchHits用于存储查找的结果。

5.返回ImageSearchHits

在这里要注意一点:

GenericImageSearcher中创建特定方法的类的时候,使用了如下形式:

LireFeature lireFeature = (LireFeature) descriptorClass.newInstance();  
即接口的方式,而不是直接新建一个对象的方式,形如:
AutoColorCorrelogram acc = new AutoColorCorrelogram(CorrelogramDocumentBuilder.MAXIMUM_DISTANCE)  

相比而言,更具有通用型。

在search()函数中,调用了一个函数findSimilar()。这个函数的作用是查找相似图片的,分析了一下它的步骤:

1.使用IndexReader获取所有的记录

2.遍历所有的记录,和当前输入的图片进行比较,使用getDistance()函数

3.获取maxDistance并返回

在findSimilar()中,又调用了一个getDistance(),该函数调用了具体检索方法的getDistance()函数。

下面我们来看一下ColorLayout类中的getDistance()函数:

    public float getDistance(LireFeature descriptor) {  
            if (!(descriptor instanceof ColorLayoutImpl)) return -1f;  
            ColorLayoutImpl cl = (ColorLayoutImpl) descriptor;  
            return (float) ColorLayoutImpl.getSimilarity(YCoeff, CbCoeff, CrCoeff, cl.YCoeff, cl.CbCoeff, cl.CrCoeff);  
        }  
发现其调用了ColorLayoutImpl类中的getSimilarity()函数:
    public static double getSimilarity(int[] YCoeff1, int[] CbCoeff1, int[] CrCoeff1, int[] YCoeff2, int[] CbCoeff2, int[] CrCoeff2) {  
            int numYCoeff1, numYCoeff2, CCoeff1, CCoeff2, YCoeff, CCoeff;  
      
            //Numbers of the Coefficients of two descriptor values.  
            numYCoeff1 = YCoeff1.length;  
            numYCoeff2 = YCoeff2.length;  
            CCoeff1 = CbCoeff1.length;  
            CCoeff2 = CbCoeff2.length;  
      
            //take the minimal Coeff-number  
            YCoeff = Math.min(numYCoeff1, numYCoeff2);  
            CCoeff = Math.min(CCoeff1, CCoeff2);  
      
            setWeightingValues();  
      
            int j;  
            int[] sum = new int[3];  
            int diff;  
            sum[0] = 0;  
      
            for (j = 0; j < YCoeff; j++) {  
                diff = (YCoeff1[j] - YCoeff2[j]);  
                sum[0] += (weightMatrix[0][j] * diff * diff);  
            }  
      
            sum[1] = 0;  
            for (j = 0; j < CCoeff; j++) {  
                diff = (CbCoeff1[j] - CbCoeff2[j]);  
                sum[1] += (weightMatrix[1][j] * diff * diff);  
            }  
      
            sum[2] = 0;  
            for (j = 0; j < CCoeff; j++) {  
                diff = (CrCoeff1[j] - CrCoeff2[j]);  
                sum[2] += (weightMatrix[2][j] * diff * diff);  
            }  
      
            //returns the distance between the two desciptor values  
      
            return Math.sqrt(sum[0] * 1.0) + Math.sqrt(sum[1] * 1.0) + Math.sqrt(sum[2] * 1.0);  
        }  
由代码可见,getSimilarity()通过具体的算法,计算两张图片特征向量之间的相似度。



你可能感兴趣的:(LIRE/图像检索)