sklearn.metrics.mean_squared_error

计算均方误差回归损失
格式:
sklearn.metrics.mean_squared_error(y_true, y_pred, sample_weight=None, multioutput=’uniform_average’)
参数:
y_true:真实值。
y_pred:预测值。
sample_weight:样本权值。
multioutput:多维输入输出,默认为’uniform_average’,计算所有元素的均方误差,返回为一个标量;也可选‘raw_values’,计算对应列的均方误差,返回一个与列数相等的一维数组。
示例:

from sklearn.metrics import mean_squared_error
y_true = [3, -1, 2, 7]
y_pred = [2, 0.0, 2, 8]
mean_squared_error(y_true, y_pred)
# 结果为:0.75
y_true = [[0.5, 1],[-1, 1],[7, -6]]
y_pred = [[0, 2],[-1, 2],[8, -5]]
mean_squared_error(y_true, y_pred)
# 结果为:0.7083333333333334
mean_squared_error(y_true, y_pred, multioutput='raw_values')
# 结果为:array([0.41666667, 1.        ])
mean_squared_error(y_true, y_pred, multioutput=[0.3, 0.7])
# 结果为:0.825
# multioutput=[0.3, 0.7]返回将array([0.41666667, 1.        ])按照0.3*0.41666667+0.7*1.0计算所得的结果
mean_squared_error(y_true, y_pred, multioutput='uniform_average')
# 结果为:0.7083333333333334

参考链接:https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html

你可能感兴趣的:(sklearn)