bzoj 1123 tarjan+乘法原理

题意:n个点,m条双向边,问删除每个点后,对于有序数对(x,y)满足x,y互不连通的数对数(即(1,2)与(2,1)算2对)。其中,被删掉的点也应被统计。

题意明白以后,一眼看过去就是tarjan

因为要求统计被删除的点,所以每个点的基础答案为 (n-1)*2

如果删去的点不是割点,则它除了基础答案外不会再增加新的不连通的数对

如果删去的点是割点,那么会裂成几个连通块,统计每个连通块的大小,用乘法原理计算新的不连通的数对数(注意乘2)

var
        n,m,time,x,y,l  :longint;
        i               :longint;
        vis             :array[0..100010] of boolean;
        ans             :array[0..100010] of int64;
        size            :array[0..100010] of longint;
        last,low,dfn    :array[0..100010] of longint;
        pre,other       :array[0..1000010] of longint;

function min(a,b:longint):longint;
begin
   if a0) do
   begin
      p:=other[q];
      if dfn[p]=0 then
      begin
         dfs(p);
         low[x]:=min(low[x],low[p]);
         inc(size[x],size[p]);
         if low[p]>=dfn[x] then
         begin
            inc(ans[x],tt*int64(size[p])*int64(2));
            inc(tt,int64(size[p]));
         end;
      end else
      if vis[p] then low[x]:=min(low[x],dfn[p]);
      q:=pre[q];
   end;
   inc(ans[x],tt*int64(n-tt-1)*int64(2));
end;

begin
   read(n,m);
   for i:=1 to m do
   begin
      read(x,y);
      connect(x,y);
      connect(y,x);
   end;
   for i:=1 to n do ans[i]:= (n-1)*2;
   for i:=1 to n do if dfn[i]=0 then dfs(i);
   for i:=1 to n do writeln(ans[i]);
end.
——by Eirlys

bzoj 1123 tarjan+乘法原理_第1张图片

你可能感兴趣的:(tarjan,bzoj,计数原理)