1. 递归:
先说一个递归的含义,就是在某个函数内部调用这个函数本身,或者说,调用一个与该函数完全相同的函数。
最简单的一个递归的应用就是,辗转相除法求最大公约数Gcd:
LL gcd(LL x, LL y) {
if(x % y == 0) return y;
else return gcd(y, x % y);
}
2. dfs(深度优先搜索):
dfs 也有几个很常见的应用,基础思想也是递归,下面简单说下常见的dfs应用:
(1)八皇后问题 & N皇后问题:
对应题目:HDU - 2553
八皇后问题,就是在8 * 8的棋盘上摆放八个皇后,要求这八个皇后,不同行,不同列,不同对角线, 问多少种摆法。
代码如下:
#include
#include
#include
#include
#include
#include
using namespace std;
#define N 8 //八皇后
int ans;
int col[10]; //col[i]表示, 第i行的皇后放在第col[i]列
void dfs(int k) {
if(k == N) ans++;
else {
for(int i = 0; i < N; i++) {
bool flg = 1;
col[k] = i;
for(int j = 0; j < k; j++) { //判断第k行的皇后与第j行的皇后是否在同一列, 是否在同一对角线
if(col[k] == col[j] || k - col[k] == j - col[j] || k + col[k] == j + col[j]) {
flg = 0; //同一主对角线上的元素的(行 - 列)是一个常数, 同一副对角线上的元素的(行 + 列)是一个常数
break;
}
}
if(flg) dfs(k + 1);
}
}
}
int main() {
dfs(0);
printf("%d\n", ans);
}
接下来是N皇后,开一个全局的N即可,传入一个N,为了防止超时,可以打表,代码如下:
#include
#include
#include
#include
#include
#include
using namespace std;
int col[13];
int N;
/*void dfs(int k) {
if(k == N) ans++;
else {
for(int i = 0; i < N; i++) {
bool flg = 1;
col[k] = i;
for(int j = 0; j < k; j++) {
if(col[k] == col[j] || k - col[k] == j - col[j] || k + col[k] == j + col[j]) {
flg = 0;
break;
}
}
if(flg) dfs(k + 1);
}
}
}*/
int ans[11] = {-1, 1, 0, 0, 2, 10, 4, 40, 92, 352, 724};
int main() {
while(~scanf("%d", &N) && N) {
//ans = 0;
//dfs(0);
printf("%d\n", ans[N]);
}
}
所谓打表,就是将 dfs 跑出的 1 ~ 10 皇后的结果存进ans数组,在输出ans[N]即可。
(2)全排列问题:
对应题目:HDU - 1716
先说下 1 ~ N 的全排列(字典序升序),代码如下:
#include
#include
#include
#include
#include
#include
using namespace std;
int n;
bool vis[10];
int ans[10];
void Dfs(int x) {
if(x == n + 1) {
for(int i = 1; i <= n; i++) printf("%d ", ans[i]);
printf("\n");
}
for(int i = 1; i <= n; i++) {
if(!vis[i]) {
vis[i] = 1;
ans[x] = i;
Dfs(x + 1);
vis[i] = 0;
}
}
}
int main() {
scanf("%d", &n);
Dfs(1);
return 0;
}
下面仿照上面的思路,写一下传进任意四个数,所能形成的四位数的全排列(以字典序升序),代码如下:
#include
#include
#include
#include
#include
#include
#include
using namespace std;
const int maxx = 1e5 + 7;
bool vis[10];
int ans[10];
int t[10];
int n;
bool chk[maxx];
int res[maxx];
int p;
void Dfs(int x) {
if(x == 5) {
int tmp = 0;
for(int i = 1; i <= 4; i++) {
tmp += ans[i] * pow(10, 4 - i);
}
if(!chk[tmp] && tmp >= 1000) {
p++;
res[p] = tmp;
chk[tmp] = 1;
}
}
for(int i = 1; i <= 4; i++) {
if(!vis[i]) {
vis[i] = 1;
ans[x] = t[i];
Dfs(x + 1);
vis[i] = 0;
}
}
}
int main() {
bool flg = 0;
int cnt = -1;
while(scanf("%d %d %d %d", &t[1], &t[2], &t[3], &t[4]) != EOF) {
if(t[1] == 0 && t[2] == 0 && t[3] == 0 && t[4] == 0) break;
memset(chk, 0, sizeof(chk));
memset(vis, 0, sizeof(vis));
memset(res, 0, sizeof(res));
p = 0;
sort(t + 1, t + 5);
Dfs(1);
for(int i = 1; i <= p; i++) printf("%d\n", res[i]);
}
}
(3)连通及连通块问题:
对应题目:HDU - 1312 、HDU - 1241 、Codeforces - 377A 、POJ - 2386
HDU - 1312 题解:
#include
#include
#include
#include
#include
using namespace std;
int n, m, ans;
char str[25][25];
int dx[5] = {-1, 0, 1, 0};
int dy[5] = {0, -1, 0, 1};
void dfs(int x, int y) {
if(x < 1 || x > n || y < 1 || y > m) return;
if(str[x][y] != '.') return;
ans++;
str[x][y] = '#';
for(int i = 0; i < 4; i++) {
int xx = x + dx[i];
int yy = y + dy[i];
dfs(xx, yy);
}
}
int main() {
while(~scanf("%d %d", &m, &n)) {
if(n == 0 && m == 0) break;
int x, y;
ans = 0;
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= m; j++) scanf(" %c", &str[i][j]);
}
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= m; j++) {
if(str[i][j] == '@') x = i, y = j;
}
}
str[x][y] = '.';
dfs(x, y);
printf("%d\n", ans);
}
return 0;
}
HDU - 1241 题解:
#include
#include
#include
#include
#include
using namespace std;
int n, m;
char s[110][110];
void dfs(int x, int y) {
if(x < 1 || x > n || y < 1 || y > m) return;
if(s[x][y] == '*') return;
s[x][y] = '*';
for(int i = -1; i <= 1; i++) {
for(int j = -1; j <= 1; j++) {
if(i != 0 || j != 0) dfs(x + i, y + j);
}
}
}
int main() {
while(~scanf("%d %d", &n, &m) && n && m) {
int ans = 0;
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++) scanf(" %c", &s[i][j]);
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= m; j++) {
if(s[i][j] == '@') {
ans++;
dfs(i, j);
}
}
}
printf("%d\n", ans);
}
}
Codeforces - 377A 题解:
#include
#include
#include
#include
#include
using namespace std;
int h, w, t;
char str[550][550];
void dfs(int x, int y) {
if(x < 1 || x > h || y < 1 || y > w) return;
if(str[x][y] != '.') return;
str[x][y] = '!';
int num = 0;
for(int i = -1; i <= 1; i++) {
for(int j = -1; j <= 1; j++) {
if(!t) return;
if(fabs(i) != fabs(j)) {
dfs(x + i, y + j);
if(str[x + i][y + j] == '.') num++;
}
}
}
if(num == 0) {
str[x][y] = 'X';
t--;
}
}
int main() {
scanf("%d %d %d", &h, &w, &t);
for(int i = 1; i <= h; i++) {
for(int j = 1; j <= w; j++) scanf(" %c", &str[i][j]);
}
for(int i = 1; i <= h; i++) {
for(int j = 1; j <= w; j++) {
dfs(i, j);
}
}
for(int i = 1; i <= h; i++) {
for(int j = 1; j <= w; j++) {
if(str[i][j] == '!') str[i][j] = '.';
}
}
for(int i = 1; i <= h; i++) {
for(int j = 1; j <= w; j++) printf("%c", str[i][j]);
printf("\n");
}
return 0;
}
POJ - 2386 题解:
#include
#include
#include
#include
#include
using namespace std;
int n, m;
char str[110][110];
void dfs(int x, int y) {
if(x < 1 || x > n || y < 1 || y > m) return;
if(str[x][y] == '.') return;
str[x][y] = '.';
for(int i = -1; i <= 1; i++) {
for(int j = -1; j <= 1; j++) {
if(i != 0 || j != 0) dfs(x + i, y + j);
}
}
}
int main() {
int p = 0;
scanf("%d %d", &n, &m);
for(int i = 1; i <= n; i++)
for(int j = 1; j <= m; j++) scanf(" %c", &str[i][j]);
for(int i = 1; i <= n; i++) {
for(int j = 1; j <= m; j++) {
if(str[i][j] == 'W') {
p++;
dfs(i, j);
}
}
}
printf("%d\n", p);
return 0;
}
(4)可转化为深搜的其他应用:
对应题目:Codeforces - 96B
我不会转化为dfs的模型,纯暴力打表过的,我博客写过这题题解,详见链接:
https://blog.csdn.net/ericgipsy/article/details/80164017
3. bfs(广度优先搜索):
(1)最短路问题:
bfs主要应用于求图内某一点到另一点的最短路径,模板代码如下:
#include
using namespace std;
typedef long long ll;
const int maxx = 1e5 + 7;
const int Inf = 1 << 30;
char s[55][55];
int vis[55][55];
int dd[4][2] = {1, 0, -1, 0, 0, 1, 0, -1};
int n, m;
int ans, res;
struct PP {
int x, y, flg;
} p, q;
int Bfs(int x, int y) { //返回的是最短路径经过的所有点的个数
memset(vis, 0, sizeof(vis));
queue
p.x = x, p.y = y, p.flg = 1;
qua.push(p);
while(!qua.empty()) {
q = qua.front();
qua.pop();
if(q.x == n && q.y == m) return q.flg;
if(!vis[q.x][q.y]) {
vis[q.x][q.y] = 1;
for(int i = 0; i < 4; i++) {
int dx = q.x + dd[i][0];
int dy = q.y + dd[i][1];
if (dx >= 1 && dx <= n && dy >= 1 && dy <= m && s[dx][dy] != '#' && !vis[dx][dy]) {
PP tmp;
tmp.x = dx, tmp.y = dy, tmp.flg = q.flg + 1;
qua.push(tmp);
}
}
}
}
return -1;
}
void Init() {
scanf("%d %d", &n, &m);
for(int i = 1; i <= n; i++) scanf("%s", s[i] + 1);
}
int main() {
Init();
cout << Bfs(1, 1) << endl;
}
由于bfs对路径是实时更新的,所以无法保存路径,可以借助dfs或者vector保存路径。
对应题目:Atcoder Beginner Contest 088 - D
题解:
#includeusing namespace std; typedef long long ll; const int maxx = 1e5 + 7; const int Inf = 1 << 30; char s[55][55]; int vis[55][55]; int dd[4][2] = {1, 0, -1, 0, 0, 1, 0, -1}; int n, m; int ans, res; struct PP { int x, y, flg; } p, q; int Bfs(int x, int y) { memset(vis, 0, sizeof(vis)); queue qua; p.x = x, p.y = y, p.flg = 1; qua.push(p); while(!qua.empty()) { q = qua.front(); qua.pop(); if(q.x == n && q.y == m) return q.flg; if(!vis[q.x][q.y]) { vis[q.x][q.y] = 1; for(int i = 0; i < 4; i++) { int dx = q.x + dd[i][0]; int dy = q.y + dd[i][1]; if (dx >= 1 && dx <= n && dy >= 1 && dy <= m && s[dx][dy] != '#' && !vis[dx][dy]) { PP tmp; tmp.x = dx, tmp.y = dy, tmp.flg = q.flg + 1; qua.push(tmp); } } } } return -1; } void Init() { scanf("%d %d", &n, &m); for(int i = 1; i <= n; i++) scanf("%s", s[i] + 1); } int main() { Init(); ans = n * m; for(int i = 1; i <= n; i++) for(int j = 1; j <= m; j++) if(s[i][j] == '#') ans--; if(s[1][1] == '#' || s[n][m] == '#') res = -1; else res = Bfs(1, 1); if(res == -1) ans = -1; else ans -= res; cout << ans << endl; }
(2)可转化为最短路的其他应用:
对应题目:POJ - 3278
POJ - 3278 题解:
#include
#include
#include
#include
#include
#include
#include
using namespace std;
const int maxx = 1e5 + 7;
int N, K;
bool vis[2 * maxx];
struct PP {
int ans;
int dp;
} p, q;
queue <PP> qua;
int Bfs(int n, int k) {
p.ans = 0, p.dp = n;
qua.push(p);
while(!qua.empty()) {
p = qua.front();
qua.pop();
if(p.dp == k) return p.ans;
if(p.dp < k && !vis[p.dp * 2]) {
q.dp = p.dp * 2;
q.ans = p.ans + 1;
vis[q.dp] = 1;
qua.push(q);
}
if(p.dp < k && !vis[p.dp + 1]) {
q.dp = p.dp + 1;
q.ans = p.ans + 1;
vis[q.dp] = 1;
qua.push(q);
}
if(p.dp - 1 >= 0 && !vis[p.dp - 1]) {
q.dp = p.dp - 1;
q.ans = p.ans + 1;
vis[p.dp] = 1;
qua.push(q);
}
}
}
int main() {
cin >> N >> K;
if(N >= K) cout << N - K << endl;
else cout << Bfs(N, K) << endl;
return 0;
}